The ensemble of random Markov matrices

Type: Article

Publication Date: 2009-07-01

Citations: 13

DOI: https://doi.org/10.1088/1742-5468/2009/07/p07005

Abstract

The ensemble of random Markov matrices is introduced as a set of Markov or stochastic matrices with the maximal Shannon entropy. The statistical properties of the stationary distribution pi, the average entropy growth rate $h$ and the second largest eigenvalue nu across the ensemble are studied. It is shown and heuristically proven that the entropy growth-rate and second largest eigenvalue of Markov matrices scale in average with dimension of matrices d as h ~ log(O(d)) and nu ~ d^(-1/2), respectively, yielding the asymptotic relation h tau_c ~ 1/2 between entropy h and correlation decay time tau_c = -1/log|nu| . Additionally, the correlation between h and and tau_c is analysed and is decreasing with increasing dimension d.

Locations

  • Journal of Statistical Mechanics Theory and Experiment - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Random correlation matrices. 1998 Jovan Dj. Golić
+ PDF Chat The Dirichlet Markov Ensemble 2009 Djalil Chafaï
+ PDF Chat Time-inhomogeneous random Markov chains 2018 Guilherme C. P. Innocentini
Marcel Novaes
+ Entropy of large dimensional random matrices 2003 Levent Akant
+ Fluctuation, Stationarity and Ergodic Properties of Random-Matrix Ensembles. 1979 Akhilesh Pandey
+ Eigenvalue Distribution of Large Random Matrices 2011 L. А. Pastur
Mariya Shcherbina
+ PDF Chat Random matrix theory 2011 Yan V. Fyodorov
+ Non-Gaussian ensembles of random matrices 2002 Saugata Ghosh
+ Disordered ensembles of random matrices 2008 O. Bohigas
J. X. de Carvalho
M. P. Pato
+ Random Matrix Theory 2020 Ariel Amir
+ Markov matrix analysis of random walks in disordered continuous media 1999 Sang Bub Lee
Hisao Nakanishi
+ The Oxford Handbook of Random Matrix Theory 2015 Gernot Akemann
Jinho Baik
Philippe Di Francesco
+ Hyper Markov Laws for Correlation Matrices 2017 Jeremy Gaskins
+ Random Matrices 2005 Mikhail Stephanov
J. J. M. Verbaarschot
Tilo Wettig
+ Random Matrices 2005 Mikhail Stephanov
J. J. M. Verbaarschot
Tilo Wettig
+ A Tutorial on the Spectral Theory of Markov Chains 2022 Eddie Seabrook
Laurenz Wiskott
+ PDF Chat A Tutorial on the Spectral Theory of Markov Chains 2023 Eddie Seabrook
Laurenz Wiskott
+ Introduction and guide to the handbook 2015 Gernot Akemann
Jinho Baik
Philippe Di Francesco
+ PDF Chat Topics in Random Matrix Theory 2012 Terence Tao
+ Brownian-motion ensembles of random matrix theory: A classification scheme and an integral transform method 2006 A. F. Macedo-Junior
A. M. S. Macêdo