Poisson inverse problems

Type: Article

Publication Date: 2006-10-01

Citations: 35

DOI: https://doi.org/10.1214/009053606000000687

Abstract

In this paper we focus on nonparametric estimators in inverse problems for Poisson processes involving the use of wavelet decompositions. Adopting an adaptive wavelet Galerkin discretization, we find that our method combines the well-known theoretical advantages of wavelet–vaguelette decompositions for inverse problems in terms of optimally adapting to the unknown smoothness of the solution, together with the remarkably simple closed-form expressions of Galerkin inversion methods. Adapting the results of Barron and Sheu [Ann. Statist. 19 (1991) 1347–1369] to the context of log-intensity functions approximated by wavelet series with the use of the Kullback–Leibler distance between two point processes, we also present an asymptotic analysis of convergence rates that justifies our approach. In order to shed some light on the theoretical results obtained and to examine the accuracy of our estimates in finite samples, we illustrate our method by the analysis of some simulated examples.

Locations

  • The Annals of Statistics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Adaptive wavelet Galerkin methods for linear inverse problems 2002 Albert Cohen
Marc Hoffmann
Markus Reiß
+ B-splines and discretization in an inverse problem for Poisson processes 2004 Zbigniew Szkutnik
+ Bayesian Inverse Problems with Heterogeneous Variance 2019 Natalia Bochkina
Jenovah Rodrigues
+ PDF Chat Adaptive Wavelet Galerkin Methods for Linear Inverse Problems 2004 Albert Cohen
Marc Hoffmann
Markus Reiß
+ Poisson intensity estimation for tomographic data using a wavelet shrinkage approach 2002 Laurent Cavalier
Ja-Yong Koo
+ PDF Chat Bernstein–von Mises theorems for statistical inverse problems II: compound Poisson processes 2019 Richard Nickl
Jakob Söhl
+ PDF Chat Maximum Likelihood Estimation in Poisson Regression via Wavelet Model Selection 2006 Frédérique Leblanc
Frédérique Letué
+ Special topics course 593C Nonparametric Estimation for Inverse Problems Algorithms and Asymptotics 1998 Piet Groeneboom
+ Intensity estimation of non-homogeneous Poisson processes from shifted trajectories 2011 Jérémie Bigot
Sébastien Gadat
T. Klein
Clément Marteau
+ Laplace's method in Bayesian inverse problems 2017 Philipp Wacker
+ Poisson intensity estimation for the Spektor–Lord–Willis problem using a wavelet shrinkage approach 2012 Bogdan Ćmiel
+ PDF Chat Laplace deconvolution with noisy observations 2013 Felix Abramovich
Marianna Pensky
Yves Rozenholc
+ PDF Chat Intensity estimation of non-homogeneous Poisson processes from shifted trajectories 2013 Jérémie Bigot
Sébastien Gadat
Thierry Klein
Clément Marteau
+ Wavelet-domain modeling and estimation of Poisson processes 2002 K.E. Timmermann
Robert D. Nowak
+ Poisson wavelets applied to model identification 1995 Karlene A. Kosanovich
Allan R. Moser
Michael J. Piovoso
+ Poisson Wavelets Applied to Model Identification 1994 Karlene A. Kosanovich
Allan R. Moser
Michael J. Piovoso
+ POISSON WAVELETS APPLIED TO MODEL IDENTIFICATION 1994 Karlene A. Kosanovich
Allan R. Moser
Michael J. Piovoso
+ PDF Chat Numerical Methods for Parameter Estimation in Poisson Data Inversion 2014 Luca Zanni
Alessandro Benfenati
M. Bertero
Valeria Ruggiero
+ PDF Chat Counting process intensity estimation by orthogonal wavelet methods 2004 Prakash Patil
Andrew T. A. Wood
+ Parameter estimation in Poisson processes (Corresp.) 1975 P. Misra
H. Sorenson