Type: Article
Publication Date: 2016-08-11
Citations: 3
DOI: https://doi.org/10.1515/crelle-2016-0041
Let $\bf{ G}$ be a tamely ramified connected reductive group defined over a non-archimedean local field $k$. We show that the Bernstein center of a tame supercuspidal block of $\bf{ G}(k)$ is isomorphic to the Bernstein center of a depth zero supercuspidal block of $\bf{ G}^{0}(k)$ for some twisted Levi subgroup of $\bf{ G}^{0}$ of $\bf{ G}$.