Moments of zeta functions associated to hyperelliptic curves over finite fields

Type: Article

Publication Date: 2015-03-24

Citations: 15

DOI: https://doi.org/10.1098/rsta.2014.0307

Abstract

Let q be an odd prime power, and denote the set of square-free monic polynomials D ( x )∈ F q [ x ] of degree d . Katz and Sarnak showed that the moments, over , of the zeta functions associated to the curves y 2 = D ( x ), evaluated at the central point, tend, as , to the moments of characteristic polynomials, evaluated at the central point, of matrices in USp (2⌊( d −1)/2⌋). Using techniques that were originally developed for studying moments of L -functions over number fields, Andrade and Keating conjectured an asymptotic formula for the moments for q fixed and . We provide theoretical and numerical evidence in favour of their conjecture. In some cases, we are able to work out exact formulae for the moments and use these to precisely determine the size of the remainder term in the predicted moments.

Locations

  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • PubMed - View
  • DataCite API - View
  • Philosophical Transactions of the Royal Society A Mathematical Physical and Engineering Sciences - View - PDF

Similar Works

Action Title Year Authors
+ Heuristic conjectures for moments of cubic L-functions over function fields 2020 Brian How
+ Moments of the Dedekind zeta function 2013 Winston Heap
+ Moments of the Dedekind zeta function and other non-primitive L-functions 2013 Winston Heap
+ Moments of the Dedekind zeta function and other non-primitive L-functions 2013 Winston Heap
+ Conjectures for the integral moments and ratios of L-functions over function fields 2014 Julio Andrade
Jonathan P. Keating
+ Random matrix theory and L-functions in function fields 2012 Bueno de Andrade
Júlio César
+ PDF Chat Applications of moments of Dirichlet coefficients in elliptic curve families 2024 Zoë X. Batterman
Aditya Jambhale
Steven J. Miller
A. Narayanan
Kishan Sharma
Andrew Yang
Chris Yao
+ Applications of Moments of Dirichlet Coefficients in Elliptic Curve Families 2023 Zoë Batterman
Aditya Jambhale
Steven J. Miller
A. Narayanan
Kishan Sharma
Andrew Yang
Chris Yao
+ Moments of quadratic Dirichlet L-functions over function fields 2022 Peng Gao
Liangyi Zhao
+ PDF Chat COMPLEX MOMENTS AND THE DISTRIBUTION OF VALUES OF OVER FUNCTION FIELDS WITH APPLICATIONS TO CLASS NUMBERS 2018 Allysa Lumley
+ Moments and distribution of central L-values of quadratic twists of elliptic curves 2014 Maksym Radziwiłł
K. Soundararajan
+ PDF Chat Computing the moment polynomials of the zeta function 2014 Michael Rubinstein
Shuntaro Yamagishi
+ Moments of Dirichlet L–functions with prime conductors over function fields 2020 Hung M. Bui
Alexandra Florea
+ PDF Chat Average values of L-series for real characters in function fields 2016 Julio Andrade
Sunghan Bae
Hwanyup Jung
+ Moments of products of automorphic L-functions 2014 Micah B. Milinovich
Caroline L. Turnage‐Butterbaugh
+ PDF Chat Moments and distribution of central $$L$$ L -values of quadratic twists of elliptic curves 2015 Maksym Radziwiłł
K. Soundararajan
+ Average Values of $L$-series for Real Characters in Function Fields 2016 Julio Andrade
Sunghan Bae
Hwanyup Jung
+ Average Values of $L$-series for Real Characters in Function Fields 2016 Julio Andrade
Sung-Han Bae
Hwanyup Jung
+ The mean value of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>L</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mfrac><mml:mn>1</mml:mn><mml:mn>2</mml:mn></mml:mfrac><mml:mo>,</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math>in the hyperelliptic ensemble 2012 Julio Andrade
Jonathan P. Keating
+ Computing the moment polynomials of the zeta function 2011 Michael Rubinstein
Shuntaro Yamagishi

Works That Cite This (15)

Action Title Year Authors
+ Random matrices and number theory: some recent themes 2017 Jon P Keating
+ The second and third moment of <i>L</i>(1/2,χ) in the hyperelliptic ensemble 2016 Alexandra Florea
+ PDF Chat Average values of L-functions in even characteristic 2017 Sunghan Bae
Hwanyup Jung
+ Moments of quadratic Dirichlet L-functions over function fields 2022 Peng Gao
Liangyi Zhao
+ On the third moment of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:mi>L</mml:mi><mml:mrow><mml:mo stretchy="true" maxsize="2.4ex" minsize="2.4ex">(</mml:mo><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>χ</mml:mi></mml:mrow><mml:mrow><mml:mi>d</mml:mi></mml:mrow></mml:msub><mml:mo stretchy="true" maxsize="2.4ex" minsize="2.4ex">)</mml:mo></mml:… 2018 Adrian Diaconu
+ PDF Chat Secondary terms in the asymptotics of moments of L-functions 2023 Adrian Diaconu
Henry Twiss
+ A note on the mean value of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi>L</mml:mi><mml:mo stretchy="false">(</mml:mo><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac><mml:mo>,</mml:mo><mml:mi>χ</mml:mi><mml:mo stretchy="false">)</mml:mo></mml:math> in the real hyperelliptic ensemble 2019 Hwanyup Jung
+ Improving the Error Term in the Mean Value of in the Hyperelliptic Ensemble 2016 Alexandra Florea
+ PDF Chat Type-I contributions to the one and two level densities of quadratic Dirichlet L–functions over function fields 2020 Hung M. Bui
Alexandra Florea
Jonathan P. Keating
+ Type-I contributions to the one and two level densities of quadratic Dirichlet $L$--functions over function fields. 2020 Hung M. Bui
Alexandra Florea
Jonathan P. Keating