Conserved energies for the cubic nonlinear Schrödinger equation in one dimension

Type: Article

Publication Date: 2018-10-26

Citations: 53

DOI: https://doi.org/10.1215/00127094-2018-0033

Abstract

We consider the cubic nonlinear Schrödinger (NLS) equation as well as the modified Korteweg–de Vries (mKdV) equation in one space dimension. We prove that for each s>−12 there exists a conserved energy which is equivalent to the Hs-norm of the solution. For the Korteweg–de Vries (KdV) equation, there is a similar conserved energy for every s≥−1.

Locations

  • Duke Mathematical Journal - View
  • eScholarship (California Digital Library) - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Conserved energies for the cubic NLS in 1-d 2016 Herbert Koch
Daniel Tataru
+ The Cubic Schrödinger Equation 2009 William E. Schiesser
Graham W. Griffiths
+ PDF Chat MODIFIED SCATTERING FOR THE CUBIC SCHRÖDINGER EQUATION ON PRODUCT SPACES AND APPLICATIONS 2015 Zaher Hani
Benoît Pausader
Nikolay Tzvetkov
Nicola Visciglia
+ PDF Chat Growth of Sobolev Norms in the Cubic Nonlinear Schrödinger Equation with a Convolution Potential 2014 Marcel Guàrdia
+ The cubic fourth-order Schrodinger equation 2008 Benoît Pausader
+ PDF Chat Corrigendum to "The lifespan of small solutions to cubic derivative nonlinear Schrödinger equations in one space dimension" [Discrete Contin. Dyn. Syst., 36 (2016), 5743–5761] 2020 Yuji Sagawa
Hideaki Sunagawa
+ PDF Chat Solitons and Scattering for the Cubic–Quintic Nonlinear Schrödinger Equation on $${\mathbb{R}^3}$$ R 3 2017 Rowan Killip
Tadahiro Oh
Oana Pocovnicu
Monica Vişan
+ Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces 2018 Tadahiro Oh
Yuzhao Wang
+ Global well-posedness of the periodic cubic fourth order NLS in negative Sobolev spaces 2017 Tadahiro Oh
Yuzhao Wang
+ A remark on norm inflation with general initial data for the cubic nonlinear Schr\"odinger equations in negative Sobolev spaces 2015 Tadahiro Oh
+ PDF Chat GLOBAL WELL-POSEDNESS OF THE PERIODIC CUBIC FOURTH ORDER NLS IN NEGATIVE SOBOLEV SPACES 2018 Tadahiro Oh
Yuzhao Wang
+ PDF Chat Growing Sobolev norms for the cubic defocusing Schrödinger equation 2014 Zaher Hani
Benoît Pausader
Nikolay Tzvetkov
Nicola Visciglia
+ Global well-posedness of the one-dimensional cubic nonlinear Schrödinger equation in almost critical spaces 2020 Tadahiro Oh
Yuzhao Wang
+ PDF Chat Global dynamics above the ground state energy for the cubic NLS equation in 3D 2011 Kenji Nakanishi
Wilhelm Schlag
+ Multisolitons for the cubic NLS in 1-d and their stability 2020 Herbert Koch
Daniel Tataru
+ Sharp well-posedness for the cubic NLS and mKdV in $H^s(\mathbb R)$ 2020 Benjamin Harrop‐Griffiths
Rowan Killip
Monica Vişan
+ Modified scattering for the cubic Schrödinger equation on product spaces and applications 2013 Zaher Hani
Benoît Pausader
Nikolay Tzvetkov
Nicola Visciglia
+ Cubic Derivative Nonlinear Schrodinger has Blowup Solutions 2007 J. Colliander
+ Almost sure local well-posedness for cubic nonlinear Schrodinger equation with higher order operators 2022 Jean‐Baptiste Casteras
Juraj Földes
Gennady Uraltsev
+ On the solution of the cubic nonlinear schrödinger equation 2015 Ιωάννης Θ. Φαμέλης
Αθανάσιος Γ. Μπράτσος