Unexpected topology of the temperature fluctuations in the cosmic microwave background

Type: Article

Publication Date: 2019-05-22

Citations: 36

DOI: https://doi.org/10.1051/0004-6361/201834916

Abstract

We study the topology generated by the temperature fluctuations of the Cosmic Microwave Background (CMB) radiation, as quantified by the number of components and holes, formally given by the Betti numbers, in the growing excursion sets. We compare CMB maps observed by the Planck satellite with a thousand simulated maps generated according to the LCDM paradigm with Gaussian distributed fluctuations. The survey of the CMB over $\mathbb{S}^2$ is incomplete due to obfuscation effects by bright point sources and other extended foreground objects like our own galaxy. To deal with such situations, where analysis in the presence of "masks" is of importance, we introduce the concept of relative homology. The parametric $\chi^2$-test shows differences between observations and simulations, yielding $p$-values at per-cent to less than per-mil levels roughly between 2 to 7 degrees. The highest observed deviation for $b_0$ and $b_1$ is approximately between $3\sigma$-4$\sigma$ at scales of 3 to 7 degrees. There are reports of mildly unusual behaviour of the Euler characteristic at 3.66 degrees in the literature, computed from independent measurements of the CMB temperature fluctuations by Planck's predecessor WMAP satellite. The mildly anomalous behaviour of Euler characteristic is related to the strongly anomalous behaviour of components and holes. These are also the scales at which the observed maps exhibit low variance compared to the simulations. Non-parametric tests show even stronger differences at almost all scales. Regardless, beyond the trivial possibility that this may still be a manifestation of an extreme Gaussian case, these observations, along with the super-horizon scales involved, may motivate to look at primordial non-Gaussianity. Alternative scenarios worth exploring may be models with non-trivial topology.

Locations

  • Astronomy and Astrophysics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • University of Groningen research database (University of Groningen / Centre for Information Technology) - View - PDF
  • OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information) - View
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Loops abound in the cosmic microwave background: A $4σ$ anomaly on super-horizon scales 2021 Pratyush Pranav
+ PDF Chat Loops abound in the cosmic microwave background: A $4\sigma$ anomaly on super-horizon scales 2021 Pratyush Pranav
+ PDF Chat Betti Functionals as a Probe for Cosmic Topology 2024 R. Aurich
Frank Steiner
+ PDF Chat Anomalies in the topology of the temperature fluctuations in the cosmic microwave background: An analysis of the NPIPE and FFP10 data releases 2021 Pratyush Pranav
+ Exploring Topology of the Universe in the Cosmic Microwave Background 2001 Kaiki Taro Inoue
+ Betti Functionals as Probes for Cosmic Topology 2024 R. Aurich
Frank Steiner
+ PDF Chat The variance of the CMB temperature gradient: a new signature of a multiply connected Universe 2021 R. Aurich
Thomas Buchert
Martin J France
Frank Steiner
+ Statistical Isotropy of CMB and Cosmic Topology 2003 Amir Hajian
Tarun Souradeep
+ Statistical Isotropy of CMB and Cosmic Topology 2003 Amir Hajian
Tarun Souradeep
+ Homology reveals significant anisotropy in the cosmic microwave background 2023 Pratyush Pranav
Thomas Buchert
+ PDF Chat Topology beyond the horizon: How far can it be probed? 2015 O. Fabre
S. Prunet
Jean–Philippe Uzan
+ PDF Chat HOT AND COLD SPOT COUNTS AS PROBES OF NON-GAUSSIANITY IN THE COSMIC MICROWAVE BACKGROUND 2012 Pravabati Chingangbam
Changbom Park
K. P. Yogendran
Rien van de Weygaert
+ PDF Chat Geometrical estimators as a test of Gaussianity in the cosmic microwave background 2001 R. B. Barreiro
E. MartĂ­nez-GonzĂĄlez
J. L. Sanz
+ PDF Chat The Status of Cosmic Topology after Planck Data 2016 Jean‐Pierre Luminet
+ PDF Chat Impact of Redshift Space Distortion on Persistent Homology of cosmic matter density field 2024 Fatemeh Abedi
M. H. Jalali Kanafi
M. Sadegh Movahed
+ PDF Chat Constraining the topology of the Universe using the polarized cosmic microwave background maps 2012 P. Bielewicz
A. J. Banday
K. M. GĂłrski
+ Primordial non-gaussianities of inflationary step-like models 2022 Camila P. Novaes
Micol Benetti
Armando Bernui
+ PDF Chat Kolmogorov complexity, cosmic microwave background maps and the curvature of the Universe 1999 V. G. Gurzadyan
+ PDF Chat A search for cosmic topology in the final WMAP data 2013 R. Aurich
Sven Lustig
+ PDF Chat Isotropy analyses of the Planck convergence map 2017 Gabriela A. Marques
Camila P. Novaes
Armando Bernui
I. S. Ferreira

Works That Cite This (30)

Action Title Year Authors
+ PDF Chat Asymmetry in Galaxy Spin Directions—Analysis of Data from DES and Comparison to Four Other Sky Surveys 2022 Lior Shamir
+ PDF Chat Anomalies in the topology of the temperature fluctuations in the cosmic microwave background: An analysis of the NPIPE and FFP10 data releases 2021 Pratyush Pranav
+ PDF Chat Bootstrapping persistent Betti numbers and other stabilizing statistics 2023 Benjamin Roycraft
Johannes Krebs
Wolfgang Polonik
+ Minkowski Functionals of SDSS-III BOSS: Hints of Possible Anisotropy in the Density Field? 2022 Stephen Appleby
Changbom Park
Pratyush Pranav
Sungwook E. Hong
Ho Seong Hwang
Juhan Kim
Thomas Buchert
+ PDF Chat Smoothness and monotonicity of the excursion set density of planar Gaussian fields 2020 Dmitry Beliaev
Michael McAuley
Stephen Muirhead
+ PDF Chat Is the observable Universe consistent with the cosmological principle? 2023 Pavan K. Aluri
Paolo Cea
Pravabati Chingangbam
M. C. Chu
R. G. Clowes
Damien HutsemĂŠkers
Joby P. Kochappan
Alexia M Lopez
Lang LiĂź
Niels C. M. Martens
+ PDF Chat Unraveling the CMB lack-of-correlation anomaly with the cosmological gravitational wave background 2023 G. Galloni
M. Ballardini
Nicola Bartolo
A. Gruppuso
L. Pagano
Angelo Ricciardone
+ A central limit theorem for the number of excursion set components of Gaussian fields 2022 Dmitry Beliaev
Michael McAuley
Stephen Muirhead
+ Estimation of Expected Euler Characteristic Curves of Nonstationary Smooth Gaussian Random Fields 2019 Fabian J. E. Telschow
Armin Schwartzman
Dan Cheng
Pratyush Pranav
+ PDF Chat The persistence of large scale structures. Part I. Primordial non-Gaussianity 2021 Matteo Biagetti
Alex Cole
Gary Shiu

Works Cited by This (47)

Action Title Year Authors
+ Elements of Algebraic Topology 2018 James R. Munkres
+ Random Fields and Geometry 2007 Robert J. Adler
Jonathan Taylor
+ PDF Chat <i>Planck</i>2015 results 2016 R. Adam
P. A. R. Ade
N. Aghanim
M. Arnaud
M. Ashdown
J. Aumont
C. Baccigalupi
A. J. Banday
R. B. Barreiro
J. G. Bartlett
+ PDF Chat Planck 2015 results - XIII. Cosmological parameters 2016 P. A. R. Ade
N. Aghanim
M. Arnaud
M. Ashdown
J. Aumont
C. Baccigalupi
A. J. Banday
R. B. Barreiro
J. G. Bartlett
N. Bartolo
+ PDF Chat Felix: A Topology Based Framework for Visual Exploration of Cosmic Filaments 2015 Nithin Shivashankar
Pratyush Pranav
Vijay Natarajan
Rien van de Weygaert
Patrick Bos
Steven Rieder
+ PDF Chat Tree Structure of a Percolating Universe 2000 S. Colombi
D. Pogosyan
Tarun Souradeep
+ PDF Chat Evidence against or for topological defects in the BOOMERanG data? 2001 F. R. Bouchet
Patrick Peter
Alain Riazuelo
Mairi Sakellariadou
+ PDF Chat The cosmic microwave background for a nearly flat compact hyperbolic universe 2001 R. Aurich
Frank Steiner
+ PDF Chat HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere 2005 K. M. Górski
E. Hivon
A. J. Banday
B. D. Wandelt
F. K. Hansen
M. Reinecke
Matthias Bartelmann
+ PDF Chat <i>Planck</i>2013 results. I. Overview of products and scientific results 2014 P. A. R. Ade
N. Aghanim
M. I. R. Alves
C. Armitage-Caplan
M. Arnaud
M. Ashdown
F. Atrio‐Barandela
J. Aumont
H. Aussel
C. Baccigalupi