A New Family of Singular Integral Operators Whose $$L^2$$ L 2 -Boundedness Implies Rectifiability

Type: Article

Publication Date: 2017-02-18

Citations: 5

DOI: https://doi.org/10.1007/s12220-017-9780-9

Locations

  • DataCite API - View
  • arXiv (Cornell University) - View - PDF
  • Journal of Geometric Analysis - View

Similar Works

Action Title Year Authors
+ Singular integral operators and rectifiability 2018 Petr Chunaev
+ PDF Chat A family of singular integral operators which control the Cauchy transform 2019 Petr Chunaev
Joan Mateu
Xavier Tolsa
+ Calder\'on-Zygmund kernels and rectifiability in the plane 2011 Vasilis Chousionis
Joan Mateu
Laura Prat
Xavier Tolsa
+ Calder贸n-Zygmund kernels and rectifiability in the plane 2011 Vasilis Chousionis
Joan Mateu
Laura Iogna Prat
Xavier Tolsa
+ A family of singular integral operators which control the Cauchy transform 2018 Petr Chunaev
Joan Mateu
Xavier Tolsa
+ A family of singular integral operators which control the Cauchy transform 2018 Petr Chunaev
Joan Mateu
Xavier Tolsa
+ PDF Chat Calder贸n鈥揨ygmund kernels and rectifiability in the plane 2012 Vasilis Chousionis
Jaume Mateu
Laura Prat
Xavier Tolsa
+ PDF Chat $L^2$-oundedness of a singular integral operator 1997 Da Shan Fan
Yifei Pan
+ $$L^p(\mathbb {R}^d)$$ Boundedness for a Class of Nonstandard Singular Integral Operators 2024 Jiecheng Chen
Guoen Hu
Xiangxing Tao
+ PDF Chat Singular integrals and rectifiability 2002 Pertti Mattila
+ $L^2$-boundedness of a singular integral operator 1997 Dashan Fan
Yibiao Pan
+ Singular integrals unsuitable for the curvature method whose $L^2$-boundedness still implies rectifiability 2016 Petr Chunaev
Joan Mateu
Xavier Tolsa
+ Singular integrals unsuitable for the curvature method whose $L^2$-boundedness still implies rectifiability 2016 Petr Chunaev
Joan Mateu
Xavier Tolsa
+ Geometric conditions for the $L^2$-boundedness of singular integral operators with odd kernels with respect to measures with polynomial growth in $\mathbb{R}^d$ 2015 Daniel Girela-Sarri贸n
+ An Extension of Calder$\acute{\rm O}$n-Zygmund type singular integral 2020 Quansen Jiu
Dongsheng Li
Huan Yu
+ $L^2_$\operatorname${loc}$-Boundedness for a Class of Singular Fourier Integral Operators 1984 A. El Kohen
+ Multi-parameter singular Radon transforms II: the L^p theory 2010 Elias M. Stein
Brian Street
+ PDF Chat Singular integrals unsuitable for the curvature method whose L2-boundedness still implies rectifiability 2019 Petr Chunaev
Joan Mateu
Xavier Tolsa
+ The maximal singular integral : estimates in terms of the singular integral 2012 Joan Verdera
+ PDF Chat An endpoint estimate for the commutators of singular integral operators with rough kernels 2020 Guoen Hu
Xiangxing Tao