Time-Fractional Allen–Cahn Equations: Analysis and Numerical Methods

Type: Article

Publication Date: 2020-11-01

Citations: 102

DOI: https://doi.org/10.1007/s10915-020-01351-5

Locations

  • Journal of Scientific Computing - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Time-Fractional Allen-Cahn Equations: Analysis and Numerical Methods 2019 Qiang Du
Jiang Yang
Zhi Zhou
+ PDF Chat Simple maximum principle preserving time-stepping methods for time-fractional Allen-Cahn equation 2020 Bingquan Ji
Hong-lin Liao
Luming Zhang
+ Highly efficient and energy dissipative schemes for the time fractional Allen-Cahn equation 2021 Dianming Hou
Chuanju Xu
+ PDF Chat Highly efficient and energy dissipative schemes for the time fractional Allen-Cahn equation 2021 Dianming Hou
Chuanju Xu
+ The variable-step L1 scheme preserving a compatible energy law for time-fractional Allen-Cahn equation 2021 Hong-lin Liao
Xiaohan Zhu
Jindi Wang
+ An energy stable and maximum bound preserving scheme with variable time steps for time fractional Allen-Cahn equation 2020 Hong-lin Liao
Tao Tang
Tao Zhou
+ Asymptotically compatible energy and dissipation law of the nonuniform L2-$1_σ$ scheme for time fractional Allen-Cahn model 2023 Hong-lin Liao
Xiaohan Zhu
Hong Sun
+ A non-uniform time-stepping convex splitting scheme for the time-fractional Cahn–Hilliard equation 2020 Jun Zhang
Jia Zhao
JinRong Wang
+ PDF Chat An Energy Stable and Maximum Bound Preserving Scheme with Variable Time Steps for Time Fractional Allen--Cahn Equation 2021 Hong-lin Liao
Tao Tang
Tao Zhou
+ PDF Chat The Variable-Step L1 Scheme Preserving a Compatible Energy Law for Time-Fractional Allen-Cahn Equation 2022 Hong-lin Liao
Jindi Wang Jindi Wang
Xiaohan Zhu
Jindi Wang Jindi Wang
+ PDF Chat A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations 2020 Hong-lin Liao
Tao Tang
Tao Tang
+ PDF Chat Local Discontinuous Galerkin Method Coupled with Nonuniform Time Discretizations for Solving the Time-Fractional Allen-Cahn Equation 2022 Zhen Wang
Luhan Sun
Jianxiong Cao
+ Energy stability and convergence of variable-step L1 scheme for the time fractional Swift-Hohenberg model 2023 Xuan Zhao
Ran Yang
Ren‐jun Qi
Hong Sun
+ PDF Chat A Decreasing Upper Bound of the Energy for Time-Fractional Phase-Field Equations 2023 Chaoyu Quan
Tao Tang
Boyi Wang
Jiang Yang
+ A decreasing upper bound of energy for time-fractional phase-field equations 2022 Chaoyu Quan
Tao Tang
Boyi Wang
Yang Jiang
+ PDF Chat A High-Order Discrete Energy Decay and Maximum-Principle Preserving Scheme for Time Fractional Allen–Cahn Equation 2023 Guoyu Zhang
Chengming Huang
Anatoly A. Alikhanov
Baoli Yin
+ A high-order discrete energy decay and maximum-principle preserving scheme for time fractional Allen-Cahn equation 2023 Guoyu Zhang
Chengming Huang
Anatoly A. Alikhanov
Baoli Yin
+ Stable second-order schemes for the space-fractional Cahn–Hilliard and Allen–Cahn equations 2019 Linlin Bu
Liquan Mei
Yan Hou
+ Compatible Energy Dissipation of the Variable-Step \({\boldsymbol{L1}}\) Scheme for the Space-Time Fractional Cahn-Hilliard Equation 2023 Zhongqin Xue
Xuan Zhao
+ PDF Chat Energy stable L2 schemes for time-fractional phase-field equations 2022 Chaoyu Quan
Boyi Wang

Works That Cite This (95)

Action Title Year Authors
+ Maximum bound principle preserving integrating factor Runge–Kutta methods for semilinear parabolic equations 2021 Lili Ju
Xiao Li
Zhonghua Qiao
Jiang Yang
+ PDF Chat The Variable-Step L1 Scheme Preserving a Compatible Energy Law for Time-Fractional Allen-Cahn Equation 2022 Hong-lin Liao
Jindi Wang Jindi Wang
Xiaohan Zhu
Jindi Wang Jindi Wang
+ A non-uniform time-stepping convex splitting scheme for the time-fractional Cahn–Hilliard equation 2020 Jun Zhang
Jia Zhao
JinRong Wang
+ PDF Chat An efficient numerical method on modified space-time sparse grid for time-fractional diffusion equation with nonsmooth data 2023 Zhu Bi-yun
Aiguo Xiao
Xue-Yang Li
+ PDF Chat A second-order and nonuniform time-stepping maximum-principle preserving scheme for time-fractional Allen-Cahn equations 2020 Hong-lin Liao
Tao Tang
Tao Tang
+ High-order unconditionally maximum-principle-preserving parametric integrating factor Runge-Kutta schemes for the nonlocal Allen-Cahn equation 2023 Zhongxiong Gao
Hong Zhang
Qian Xu
Songhe Song
+ Second-order linear adaptive time-stepping schemes for the fractional Allen–Cahn equation 2023 Linlin Bu
Jianhua Wu
Liquan Mei
Ying Wang
+ Long time <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si563.svg" display="inline" id="d1e1453"><mml:msup><mml:mrow><mml:mi>H</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msup></mml:math>-stability of fast L2-1<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si12.svg" display="inline" id="d1e1463"><mml:msub><mml:mrow/><mml:mrow><mml:mi>σ</mml:mi></mml:mrow></mml:msub></mml:math> method on general nonuniform meshes for subdiffusion equations 2023 Chaoyu Quan
Xu Wu
Jiang Yang
+ Fast algorithm for nonlocal Allen–Cahn equation with scalar auxiliary variable approach 2021 Changhui Yao
Huijun Fan
Yanmin Zhao
Yanhua Shi
Fenling Wang
+ PDF Chat Approximation of an optimal control problem for the time-fractional Fokker-Planck equation 2021 Fabio Camilli
Serikbolsyn Duisembay
Qing Tang