The strong fractional choice number of 3‐choice‐critical graphs

Type: Article

Publication Date: 2022-08-08

Citations: 1

DOI: https://doi.org/10.1002/jgt.22874

Abstract

Abstract A graph is called 3‐choice‐critical if is not 2‐choosable but any proper subgraph of is 2‐choosable. A graph is strongly fractional ‐choosable if is ‐choosable for all positive integers for which . The strong fractional choice number of is is strongly fractional ‐choosable. This paper determines the strong fractional choice number of all 3‐choice‐critical graphs.

Locations

  • Journal of Graph Theory - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ The strong fractional choice number of $3$-choice critical graphs 2020 Rongxing Xu
Xuding Zhu
+ The strong fractional choice number of series–parallel graphs 2020 Xuer Li
Xuding Zhu
+ Strong fractional choice number of series-parallel graphs 2019 Xuer Li
Xuding Zhu
+ The strong fractional choice number and the strong fractional paint number of graphs 2021 Rongxing Xu
Xuding Zhu
+ PDF Chat The Strong Fractional Choice Number and the Strong Fractional Paint Number of Graphs 2022 Rongxing Xu
Xuding Zhu
+ Multiple list colouring of $3$-choice critical graphs 2020 Rongxing Xu
Xuding Zhu
+ Choice numbers of graphs 2008 Shai Gutner
+ Choice numbers of graphs 2008 Shai Gutner
+ Fractional matchings and component-factors of (edge-chromatic critical) graphs. 2019 Antje Klopp
Eckhard Steffen
+ Fractional strong chromatic index of bipartite graphs 2017 Michaĺ Deͅbski
+ PDF Chat On (4, 2)-Choosable Graphs 2016 Jixian Meng
Gregory J. Puleo
Xuding Zhu
+ PDF Chat Strong Chromatic Index of Chordless Graphs 2014 Manu Basavaraju
Mathew C. Francis
+ Choice number of 3-colorable elementary graphs 1997 Sylvain Gravier
Frédéric Maffray
+ Strong Chromatic Index of 2-Degenerate Graphs 2012 Gerard J. Chang
N. Narayanan
+ Conditions of a graph being fractional k-factor-critical 2013 LI Qia
+ Matching and Factor-Critical Property in 3-Dominating-Critical Graphs 2009 Tao Wang
Qinglin Yu
+ Finding Fractional Colourings and Large Stable Sets 2002 Michael Molloy
Bruce Reed
+ PDF Chat Fractional Matchings, Component-Factors and Edge-Chromatic Critical Graphs 2021 Antje Klopp
Eckhard Steffen
+ PDF Chat Vizing's 2‐Factor Conjecture Involving Large Maximum Degree 2017 Guantao Chen
Songling Shan
+ A theorem on fractional ID-(g,f)-factor-critical graphs 2015 Sizhong Zhou
Zhiren Sun
Yang Xu