Spacetime integral bounds for the energy-critical nonlinear wave equation

Type: Article

Publication Date: 2023-08-16

Citations: 0

DOI: https://doi.org/10.1090/proc/16641

Abstract

In this paper we prove a global spacetime bound for the quintic, nonlinear wave equation in three dimensions. This bound depends on the <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Subscript t Superscript normal infinity Baseline upper L Subscript x Superscript 2"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>x</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msubsup> </mml:mrow> <mml:annotation encoding="application/x-tex">L_{t}^{\infty } L_{x}^{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper L Subscript t Superscript normal infinity Baseline ModifyingAbove upper H With dot squared"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>L</mml:mi> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi>t</mml:mi> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="normal">∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:msubsup> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mover> <mml:mi>H</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">L_{t}^{\infty } \dot {H}^{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> norms of the solution to the quintic problem. The main motivation for this paper is the use of an interaction Morawetz estimate for the nonlinear wave equation.

Locations

  • Proceedings of the American Mathematical Society - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Spacetime integral bounds for the energy-critical nonlinear wave equation 2020 Benjamin Dodson
+ Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions 2006 Terence Tao
+ PDF Chat Spacetime bounds for the energy-critical nonlinear wave equation in three spatial dimensions 2006 Terence Tao
+ Decay estimates for one-dimensional wave equations with inverse power potentials 2014 Ovidiu Costin
Min Huang
+ On the non-blow up of energy critical nonlinear massless scalar fields in `3+1' dimensional globally hyperbolic spacetimes: Light cone estimates 2021 Puskar Mondal
+ On the non-blow up of energy critical nonlinear massless scalar fields in `3+1' dimensional globally hyperbolic spacetimes: Light cone estimates 2021 Puskar Mondal
+ PDF Chat On the non-blow up of energy critical nonlinear massless scalar fields in ‘$3+1$’ dimensional globally hyperbolic spacetimes: light cone estimates 2021 Puskar Mondal
+ A controlling norm for energy-critical Schrödinger maps 2015 Benjamin Dodson
Paul N. Smith
+ PDF Chat Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case 1999 Jean Bourgain
+ On the profile of energy concentration at blow-up points for subconformal focusing nonlinear waves 2015 Spyros Alexakis
Arick Shao
+ Almost global existence for quasilinear wave equations in three space dimensions 2003 M. Keel
Hart F. Smith
Christopher D. Sogge
+ PDF Chat 𝐿^{𝑝} estimates for Schrödinger evolution equations 1985 Mikhaël Balabane
Hassan Emamirad
+ Energy decay for wave equations with nonlinear damping and space-time coefficient in Rn 2023 Paul A. Ogbiyele
P. O. Arawomo
+ Dynamics for the energy critical nonlinear wave equation in high dimensions 2010 Dong Li
Xiao-Yi Zhang
+ Type II Blow Up Solutions with Optimal Stability Properties for the Critical Focussing Nonlinear Wave Equation on ℝ³⁺¹ 2022 Stefano Burzio
Joachim Krieger
+ A Liouville type theorem for the Schrödinger operator 1999 Antonios D. Melas
+ Infinite Time Blow-Up Solutions to the Energy Critical Wave Maps Equation 2023 Mohandas Pillai
+ On the Eshelby-Kostrov property for the wave equation in the plane 2006 Miguel A. Herrero
Gerardo E. Oleaga
Juan J. L. Velázquez
+ PDF Chat Nonlinear wave propagation in large extra spatial dimensions and the blackbody thermal laws 2024 Inês Soares
Rodrigo Turcati
S. B. Duarte
+ PDF Chat The blow-up boundary for nonlinear wave equations 1986 Luis Caffarelli
Avner Friedman

Works That Cite This (0)

Action Title Year Authors