On the Liouville function at polynomial arguments

Type: Article

Publication Date: 2024-07-17

Citations: 1

DOI: https://doi.org/10.1353/ajm.2024.a932436

Abstract

abstract: Let $\lambda$ denote the Liouville function. A problem posed by Chowla and by Cassaigne--Ferenczi--Mauduit--Rivat--S\'ark\"ozy asks to show that if $P(x)\in\mathbb{Z}[x]$, then the sequence $\lambda(P(n))$ changes sign infinitely often, assuming only that $P(x)$ is not the square of another polynomial. We show that the sequence $\lambda(P(n))$ indeed changes sign infinitely often, provided that either (i) $P$ factorizes into linear factors over the rationals; or (ii) $P$ is a reducible cubic polynomial; or (iii) $P$ factorizes into a product of any number of quadratics of a certain type; or (iv) $P$ is any polynomial not belonging to an exceptional set of density zero. Concerning (i), we prove more generally that the partial sums of $g(P(n))$ for $g$ a bounded multiplicative function exhibit nontrivial cancellation under necessary and sufficient conditions on $g$. This establishes a ``99\% version'' of Elliott's conjecture for multiplicative functions taking values in the roots of unity of some order. Part (iv) also generalizes to the setting of $g(P(n))$ and provides a multiplicative function analogue of a recent result of Skorobogatov and Sofos on almost all polynomials attaining a prime value.

Locations

  • American Journal of Mathematics - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ On the Liouville function at polynomial arguments 2020 Joni Teräväinen
+ On a Bohr set analogue of Chowla's conjecture 2023 Joni Teräväinen
Aled Walker
+ On the correlation of completely multiplicative functions 2013 Himadri Ganguli
+ Higher uniformity of bounded multiplicative functions in short intervals on average 2020 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
Joni Teräväinen
Tamar Ziegler
+ PDF Chat Distribution of neighboring values of the Liouville and M\"obius functions 2024 Qi Luo
Yangbo Ye
+ PDF Chat Completely multiplicative functions taking values in ${-1,1}$ 2010 Peter Borwein
Stephen Choi
Michael James Coons
+ PDF Chat On the Liouville function on rational polynomial values 2021 Gabriella Hajdu
Lajos Hajdu
+ PDF Chat Sign Changes of the Liouville Function on Quadratics 2011 Peter Borwein
Stephen Choi
Himadri Ganguli
+ PDF Chat Higher uniformity of bounded multiplicative functions in short intervals on average 2023 Kaisa Matomäki
Maksym Radziwiłł
Terence Tao
Joni Teräväinen
Tamar Ziegler
+ Multiplicative functions at consecutive integers 1986 Adolf Hildebrand
+ PDF Chat Biases in prime factorizations and Liouville functions for arithmetic progressions 2019 Peter Humphries
Snehal M. Shekatkar
Tian An Wong
+ On the residue class distribution of the number of prime divisors of an integer 2009 Michael James Coons
Sander R. Dahmen
+ On Elliott's conjecture and applications 2023 Oleksiy Klurman
Alexander P. Mangerel
Joni Teräväinen
+ Completely multiplicative functions taking values in $\{-1,1\}$ 2008 Peter Borwein
Stephen Choi
Michael James Coons
+ An irrationality measure for Liouville numbers and conditional measures for Euler's constant 2003 Jonathan Sondow
+ On Correlations of Liouville-like Functions 2023 Y. You
+ Unexpected biases in prime factorizations and Liouville functions for arithmetic progressions 2017 Snehal M. Shekatkar
Tian An Wong
+ PDF Chat All Liouville Numbers are Transcendental 2017 Artur Korniłowicz
Adam Naumowicz
Adam Grabowski
+ Improved bounds for the two-point logarithmic Chowla conjecture 2023 CĂ©dric Pilatte
+ On multiplicative functions with f(p+q+n0)=f(p)+f(q)+f(n0) 2016 Yong-Gao Chen
Jin-Hui Fang
Pingzhi Yuan
Yueping Zheng