Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients
William S. Moses
,
Valentin Churavy
Type:
Preprint
Publication Date:
2020-10-04
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients
2020
William S. Moses
Valentin Churavy
+
DLVM: A modern compiler infrastructure for deep learning systems
2017
Richard Wei
Lane Schwartz
Vikram Adve
+
DLVM: A modern compiler infrastructure for deep learning systems
2017
Richard Wei
Lane Schwartz
Vikram Adve
+
DLVM: A modern compiler infrastructure for deep learning
2017
Richard Wei
Vikram Adve
Lane Schwartz
+
LoopStack: a Lightweight Tensor Algebra Compiler Stack
2022
Bram Wasti
José Cambronero
Benoit Steiner
Hugh Leather
Aleksandar Zlateski
+
Automatic differentiation in ML: Where we are and where we should be going.
2018
Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
+
AutoGraph: Imperative-style Coding with Graph-based Performance
2018
Dan Moldovan
James Decker
Fei Wang
A. Johnson
Brian K. Lee
Zachary Nado
D. Sculley
Tiark Rompf
Alexander B. Wiltschko
+
Automatic differentiation in ML: Where we are and where we should be going
2018
Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
+
Automatic differentiation in ML: Where we are and where we should be going
2018
Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
+
A Differentiable Programming System to Bridge Machine Learning and Scientific Computing
2019
Mike Innes
Alan Edelman
Keno Fischer
Christopher Rackauckas
Elliot Saba
Viral B Shah
Will Tebbutt
+
TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning
2019
Akshay Agrawal
Akshay Naresh Modi
Alexandre Passos
Allen Lavoie
Ashish Agarwal
Asim Shankar
Igor Ganichev
Josh Levenberg
Mingsheng Hong
Rajat Monga
+
Zygote: A Differentiable Programming System to Bridge Machine Learning and Scientific Computing
2019
Mike Innes
Alan Edelman
Keno Fischer
Christopher Rackauckas
Elliot Saba
Viral B. Shah
Will Tebbutt
+
PDF
Chat
Pruner: An Efficient Cross-Platform Tensor Compiler with Dual Awareness
2024
Liang Qiao
Jun Shi
Xiaoyu Hao
Xi Fang
Minfan Zhao
Ziqi Zhu
Junshi Chen
Hong An
Bing Li
Honghui Yuan
+
Differentiate Everything with a Reversible Embeded Domain-Specific Language
2020
Jin-Guo Liu
Taine Zhao
+
A Brief Introduction to Automatic Differentiation for Machine Learning
2021
Davan Harrison
+
A Brief Introduction to Automatic Differentiation for Machine Learning.
2021
Davan Harrison
+
ACRoBat: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time
2023
Pratik Fegade
Tianqi Chen
Phillip B. Gibbons
Todd C. Mowry
+
Forward-Mode Automatic Differentiation of Compiled Programs
2022
Max Aehle
Johannes Blühdorn
Max Sagebaum
Nicolas R. Gauger
+
PDF
Chat
JaxDecompiler: Redefining Gradient-Informed Software Design
2024
Pierrick Pochelu
+
The simple essence of automatic differentiation (Differentiable functional programming made easy).
2018
Conal Elliott
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (20)
Action
Title
Year
Authors
+
Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation
1987
Andreas Griewank
Andrea Walther
+
Fast Reverse-Mode Automatic Differentiation using Expression Templates in C++
2014
Robin J. Hogan
+
“To be recorded” analysis in reverse-mode automatic differentiation
2004
Laurent Hascoët
Uwe Naumann
Valérie Pascual
+
Adjoint sensitivity analysis for time-dependent partial differential equations with adaptive mesh refinement
2004
Shengtai Li
Linda Petzold
+
PDF
Chat
FastPM: a new scheme for fast simulations of dark matter and haloes
2016
Yu Feng
Man-Yat Chu
Uroš Seljak
Patrick McDonald
+
PDF
Chat
A Differentiable Physics Engine for Deep Learning in Robotics
2019
Jonas Degrave
Michiel Hermans
Joni Dambre
Francis wyffels
+
High-level python abstractions for optimal checkpointing in inversion problems
2018
Navjot Kukreja
Jan Hückelheim
Michael Lange
Mathias Louboutin
Andrea Walther
Simon W. Funke
Gerard Gorman
+
PDF
Chat
Mixed-language automatic differentiation
2018
Valérie Pascual
Laurent Hascoët
+
PDF
Chat
A benchmark of selected algorithmic differentiation tools on some problems in computer vision and machine learning
2018
Filip Šrajer
Zuzana Kúkelová
Andrew Fitzgibbon
+
Don't Unroll Adjoint: Differentiating SSA-Form Programs.
2018
Michael Innes