Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients

Type: Preprint

Publication Date: 2020-10-04

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients 2020 William S. Moses
Valentin Churavy
+ DLVM: A modern compiler infrastructure for deep learning systems 2017 Richard Wei
Lane Schwartz
Vikram Adve
+ DLVM: A modern compiler infrastructure for deep learning systems 2017 Richard Wei
Lane Schwartz
Vikram Adve
+ DLVM: A modern compiler infrastructure for deep learning 2017 Richard Wei
Vikram Adve
Lane Schwartz
+ LoopStack: a Lightweight Tensor Algebra Compiler Stack 2022 Bram Wasti
José Cambronero
Benoit Steiner
Hugh Leather
Aleksandar Zlateski
+ Automatic differentiation in ML: Where we are and where we should be going. 2018 Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
+ AutoGraph: Imperative-style Coding with Graph-based Performance 2018 Dan Moldovan
James Decker
Fei Wang
A. Johnson
Brian K. Lee
Zachary Nado
D. Sculley
Tiark Rompf
Alexander B. Wiltschko
+ Automatic differentiation in ML: Where we are and where we should be going 2018 Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
+ Automatic differentiation in ML: Where we are and where we should be going 2018 Bart van Merriënboer
Olivier Breuleux
Arnaud Bergeron
Pascal Lamblin
+ A Differentiable Programming System to Bridge Machine Learning and Scientific Computing 2019 Mike Innes
Alan Edelman
Keno Fischer
Christopher Rackauckas
Elliot Saba
Viral B Shah
Will Tebbutt
+ TensorFlow Eager: A Multi-Stage, Python-Embedded DSL for Machine Learning 2019 Akshay Agrawal
Akshay Naresh Modi
Alexandre Passos
Allen Lavoie
Ashish Agarwal
Asim Shankar
Igor Ganichev
Josh Levenberg
Mingsheng Hong
Rajat Monga
+ Zygote: A Differentiable Programming System to Bridge Machine Learning and Scientific Computing 2019 Mike Innes
Alan Edelman
Keno Fischer
Christopher Rackauckas
Elliot Saba
Viral B. Shah
Will Tebbutt
+ PDF Chat Pruner: An Efficient Cross-Platform Tensor Compiler with Dual Awareness 2024 Liang Qiao
Jun Shi
Xiaoyu Hao
Xi Fang
Minfan Zhao
Ziqi Zhu
Junshi Chen
Hong An
Bing Li
Honghui Yuan
+ Differentiate Everything with a Reversible Embeded Domain-Specific Language 2020 Jin-Guo Liu
Taine Zhao
+ A Brief Introduction to Automatic Differentiation for Machine Learning 2021 Davan Harrison
+ A Brief Introduction to Automatic Differentiation for Machine Learning. 2021 Davan Harrison
+ ACRoBat: Optimizing Auto-batching of Dynamic Deep Learning at Compile Time 2023 Pratik Fegade
Tianqi Chen
Phillip B. Gibbons
Todd C. Mowry
+ Forward-Mode Automatic Differentiation of Compiled Programs 2022 Max Aehle
Johannes Blühdorn
Max Sagebaum
Nicolas R. Gauger
+ PDF Chat JaxDecompiler: Redefining Gradient-Informed Software Design 2024 Pierrick Pochelu
+ The simple essence of automatic differentiation (Differentiable functional programming made easy). 2018 Conal Elliott

Works That Cite This (0)

Action Title Year Authors