On Pointwise $$\ell ^r$$-Sparse Domination in a Space of Homogeneous Type

Type: Article

Publication Date: 2020-10-03

Citations: 19

DOI: https://doi.org/10.1007/s12220-020-00514-y

Abstract

We prove a general sparse domination theorem in a space of homogeneous type, in which a vector-valued operator is controlled pointwise by a positive, local expression called a sparse operator. We use the structure of the operator to get sparse domination in which the usual $\ell^1$-sum in the sparse operator is replaced by an $\ell^r$-sum. This sparse domination theorem is applicable to various operators from both harmonic analysis and (S)PDE. Using our main theorem, we prove the $A_2$-theorem for vector-valued Calder\'on--Zygmund operators in a space of homogeneous type, from which we deduce an anisotropic, mixed norm Mihlin multiplier theorem. Furthermore, we show quantitative weighted norm inequalities for the Rademacher maximal operator, for which Banach space geometry plays a major role.

Locations

  • arXiv (Cornell University) - View - PDF
  • Research Repository (Delft University of Technology) - View - PDF
  • Data Archiving and Networked Services (DANS) - View - PDF
  • DataCite API - View
  • Journal of Geometric Analysis - View - PDF

Similar Works

Action Title Year Authors
+ On pointwise $\ell^r$-sparse domination in a space of homogeneous type 2019 Emiel Lorist
+ PDF Chat Sparse domination implies vector-valued sparse domination 2022 Emiel Lorist
Zoe Nieraeth
+ PDF Chat An introduction to pointwise sparse domination 2024 Rodrigo Duarte
+ Operator-free sparse domination 2021 Andrei K. Lerner
Emiel Lorist
Sheldy Ombrosi
+ Operator-free sparse domination 2021 Andrei K. Lerner
Emiel Lorist
Sheldy Ombrosi
+ Convex body domination for a class of multi-scale operators 2023 Aapo Laukkarinen
+ PDF Chat Operator-free sparse domination 2022 Andrei K. Lerner
Emiel Lorist
Sheldy Ombrosi
+ Sparse domination of uncentered variational operators 2016 Fernanda Clara de França Silva
Pavel Zorin‐Kranich
+ Sparse domination implies vector-valued sparse domination 2020 Emiel Lorist
Zoe Nieraeth
+ PDF Chat Endpoint weak-type bounds beyond Calder\'on-Zygmund theory 2024 Zoe Nieraeth
Cody B. Stockdale
+ PDF Chat Positive Sparse Domination of Variational Carleson Operators 2018 Francesco Di Plinio
Yen Q.
Gennady Uraltsev
+ Positive sparse domination of variational Carleson operators 2016 Francesco Di Plinio
Yen Q.
Gennady Uraltsev
+ Positive sparse domination of variational Carleson operators 2016 Francesco Di Plinio
Yen Do
Gennady Uraltsev
+ Weak and strong type $A_1$-$A_\infty$ estimates for sparsely dominated operators 2017 Dorothee Frey
Bas Nieraeth
+ Convex body domination and weighted estimates with matrix weights 2017 Fëdor Nazarov
Stefanie Petermichl
Sergei Treil
Alexander Volberg
+ Weighted norm inequalities in a bounded domain by the sparse domination method 2019 Emma-Karoliina Kurki
Antti V. Vähäkangas
+ Dominación sparse y el teorema A2 2018 Israel Pablo Rivera Rios
+ Convex body domination and weighted estimates with matrix weights 2017 Fëdor Nazarov
Stefanie Petermichl
Sergei Treil
Alexander Volberg
+ Causal sparse domination of Beurling maximal regularity operators 2021 Tuomas Hytönen
Andreas Rosén
+ A unified method for maximal truncated Calderón-Zygmund operators in general function spaces by sparse domination 2017 Theresa C. Anderson
Bingyang Hu