The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 challenge

Type: Article

Publication Date: 2020-10-02

Citations: 389

DOI: https://doi.org/10.1016/j.media.2020.101821

Locations

  • Medical Image Analysis - View
  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • PubMed - View

Similar Works

Action Title Year Authors
+ The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: Results of the KiTS19 Challenge 2019 Nicholas Heller
Fabian Isensee
Klaus H. Maier‐Hein
Xiaoshuai Hou
Chunmei Xie
Fengyi Li
Nan Yang
Guangrui Mu
Zhiyong Lin
Miofei Han
+ The KiTS21 Challenge: Automatic segmentation of kidneys, renal tumors, and renal cysts in corticomedullary-phase CT 2023 Nicholas Heller
Fabian Isensee
Dasha Trofimova
Resha Tejpaul
Zhongchen Zhao
Huai Chen
Lisheng Wang
Alex Golts
Daniel Khapun
Daniel Shats
+ PDF Chat Kidney tumor segmentation using an ensembling multi-stage deep learning approach. A contribution to the KiTS19 challenge 2019 Gianmarco Santini
Noémie Moreau
Mathieu Rubeaux
+ Automated 3D Segmentation of Kidneys and Tumors in MICCAI KiTS 2023 Challenge 2023 Andriy Myronenko
Dong Yang
Yufan He
Daguang Xu
+ The KiTS19 Challenge Data: 300 Kidney Tumor Cases with Clinical Context, CT Semantic Segmentations, and Surgical Outcomes 2019 Nicholas Heller
Niranjan Sathianathen
Arveen Kalapara
Edward Walczak
Keenan Moore
Heather Kaluzniak
Joel Rosenberg
Paul Blake
Zachary Rengel
Makinna Oestreich
+ Kidney and Kidney Tumour Segmentation in CT Images 2022 Qi Ming How
Hoi Lee
+ PDF Chat Leveraging Clinical Characteristics for Improved Deep Learning-Based Kidney Tumor Segmentation on CT 2022 Christina B. Lund
Bas H. M. van der Velden
+ Kidney abnormality segmentation in thorax-abdomen CT scans 2023 Gabriel Efrain Humpire Mamani
Nikolas Leßmann
Ernst T. Scholten
Mathias Prokop
Colin Jacobs
Bram van Ginneken
+ Cascaded Volumetric Convolutional Network for Kidney Tumor Segmentation from CT volumes 2019 Yao Zhang
Yixin Wang
Feng Hou
Jiawei Yang
Guangwei Xiong
Jiang Tian
Cheng Zhong
+ PDF Chat Automated Small Kidney Cancer Detection in Non-Contrast Computed Tomography 2024 William McGough
Thomas Buddenkotte
Stephan Ursprung
Zeyu Gao
Grant D. Stewart
M. Crispin Ortuzar
+ Exploring 3D U-Net Training Configurations and Post-Processing Strategies for the MICCAI 2023 Kidney and Tumor Segmentation Challenge 2023 Kwang-Hyun Uhm
Hyunjun Cho
Zhixin Xu
Seohoon Lim
Seung‐Won Jung
Sung‐Hoo Hong
Sung-Jea Ko
+ 3D Kidneys and Kidney Tumor Semantic Segmentation using Boundary-Aware Networks 2019 Andriy Myronenko
Ali Hatamizadeh
+ Automatic segmentation of kidney and liver tumors in CT images 2019 Dina B. Efremova
Д. А. Коновалов
Thanongchai Siriapisith
Worapan Kusakunniran
Peter Haddawy
+ Automatic segmentation of kidney and liver tumors in CT images 2019 Dina B. Efremova
Dmitry A. Konovalov
Thanongchai Siriapisith
Worapan Kusakunniran
Peter Haddawy
+ 3D Kidneys and Kidney Tumor Semantic Segmentation using Boundary-Aware Networks. 2019 Andriy Myronenko
Ali Hatamizadeh
+ Multi-Scale Supervised 3D U-Net for Kidneys and Kidney Tumor Segmentation 2020 Wenshuai Zhao
Dihong Jiang
Jorge Peña Queralta
Tomi Westerlund
+ Kidney and Kidney Tumor Segmentation using a Logical Ensemble of U-nets with Volumetric Validation 2019 Jamie A. O’Reilly
Manas Sangworasil
Takenobu Matsuura
+ MSS U-Net: 3D segmentation of kidneys and tumors from CT images with a multi-scale supervised U-Net 2020 Wenshuai Zhao
Dihong Jiang
Jorge Peña Queralta
Tomi Westerlund
+ Automated Small Kidney Cancer Detection in Non-Contrast Computed Tomography 2023 William McGough
Thomas Buddenkotte
Stephan Ursprung
Zeyu Gao
Grant D. Stewart
M. Crispin Ortuzar
+ PDF Chat Segmentation of Kidney Tumors on Non-Contrast CT Images Using Protuberance Detection Network 2023 Taro Hatsutani
Akimichi Ichinose
Keigo Nakamura
Yoshiro Kitamura

Works That Cite This (68)

Action Title Year Authors
+ PDF Chat Med-DANet V2: A Flexible Dynamic Architecture for Efficient Medical Volumetric Segmentation 2024 Haoran Shen
Yifu Zhang
Wenxuan Wang
Chen Chen
Jing Liu
Shanshan Song
Jiangyun Li
+ PDF Chat SCPMan: Shape context and prior constrained multi-scale attention network for pancreatic segmentation 2024 Leilei Zeng
Xuechen Li
Xinquan Yang
Wenting Chen
Jingxin Liu
Linlin Shen
Song Wu
+ PDF Chat Uncertainty-guided mutual consistency learning for semi-supervised medical image segmentation 2022 Yichi Zhang
Rushi Jiao
Qingcheng Liao
Dongyang Li
Jicong Zhang
+ UNesT: Local spatial representation learning with hierarchical transformer for efficient medical segmentation 2023 Xin Yu
Qi Yang
Yinchi Zhou
Leon Y. Cai
Riqiang Gao
Ho Hin Lee
Thomas Li
Shunxing Bao
Zhoubing Xu
Thomas A. Lasko
+ Multimodal deep learning for personalized renal cell carcinoma prognosis: Integrating CT imaging and clinical data 2023 Maryamalsadat Mahootiha
Hemin Ali Qadir
Jacob Bergsland
Ilangko Balasingham
+ PDF Chat CPNet: Cycle Prototype Network for Weakly-Supervised 3D Renal Compartments Segmentation on CT Images 2021 Song Wang
Yuting He
Youyong Kong
Xiaomei Zhu
Shaobo Zhang
Pengfei Shao
Jean‐Louis Dillenseger
Jean-Louis Coatrieux
Shuo Li
Guanyu Yang
+ A deep-learning approach for direct whole-heart mesh reconstruction 2021 Fanwei Kong
Nathan M. Wilson
Shawn C. Shadden
+ PDF Chat QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation – Analysis of Ranking Scores and Benchmarking Results 2022 Raghav Mehta
Angelos Filos
Ujjwal Baid
Chiharu Sako
Richard McKinley
Michael Rebsamen
Katrin Dätwyler
Raphael Meier
Piotr Radojewski
Gowtham Krishnan Murugesan
+ PDF Chat Federated Alternate Training (Fat): Leveraging Unannotated Data Silos in Federated Segmentation for Medical Imaging 2023 Erum Mushtaq
Yavuz Faruk Bakman
Jie Ding
Salman Avestimehr
+ PDF Chat Tailored multi-organ segmentation with model adaptation and ensemble 2023 Jiahua Dong
Guohua Cheng
Yue Zhang
Chengtao Peng
Yu Song
Ruofeng Tong
Lanfen Lin
Yen‐Wei Chen

Works Cited by This (24)

Action Title Year Authors
+ PDF Chat Deep Residual Learning for Image Recognition 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ PDF Chat Identity Mappings in Deep Residual Networks 2016 Kaiming He
Xiangyu Zhang
Shaoqing Ren
Jian Sun
+ V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation 2016 Fausto Milletarì
Nassir Navab
Seyed‐Ahmad Ahmadi
+ PDF Chat A survey on deep learning in medical image analysis 2017 Geert Litjens
Thijs Kooi
Babak Ehteshami Bejnordi
Arnaud Arindra Adiyoso Setio
Francesco Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
Clara I. Sá‎nchez
+ Attention U-Net: Learning Where to Look for the Pancreas 2018 Ozan Oktay
Jo Schlemper
Loïc Le Folgoc
Matthew C. H. Lee
Mattias P. Heinrich‬
Kazunari Misawa
Kensaku Mori
Steven McDonagh
Nils Hammerla
Bernhard Kainz
+ Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge 2018 Spyridon Bakas
Mauricio Reyes
Enzo Battistella
Siddhartha Chandra
Huiguang He
Lucas Fidon
Maria Vakalopoulou
Roger Sun
et al.
Éric Deutsch
+ PDF Chat Why rankings of biomedical image analysis competitions should be interpreted with care 2018 Lena Maier‐Hein
Matthias Eisenmann
Annika Reinke
Sinan Onogur
Marko Stankovic
Patrick Scholz
Tal Arbel
Hrvoje Bogunović
Andrew P. Bradley
Aaron Carass
+ Evaluation of Algorithms for Multi-Modality Whole Heart Segmentation: An Open-Access Grand Challenge 2019 Xiahai Zhuang
Lei Li
Christian Payer
Darko Štern
Martin Urschler
Mattias P. Heinrich‬
Julien Oster
Chunliang Wang
Örjan Smedby
Cheng Bian
+ The KiTS19 Challenge Data: 300 Kidney Tumor Cases with Clinical Context, CT Semantic Segmentations, and Surgical Outcomes 2019 Nicholas Heller
Niranjan Sathianathen
Arveen Kalapara
Edward Walczak
Keenan Moore
Heather Kaluzniak
Joel Rosenberg
Paul Blake
Zachary Rengel
Makinna Oestreich
+ nnU-Net: Breaking the Spell on Successful Medical Image Segmentation. 2019 Fabian Isensee
Jens Petersen
Simon Kohl
Paul F. Jäger
Klaus H. Maier‐Hein