Fiber bundle codes: breaking the <i>n</i> <sup>1/2</sup> polylog( <i>n</i> ) barrier for Quantum LDPC codes

Type: Preprint

Publication Date: 2021-06-15

Citations: 50

DOI: https://doi.org/10.1145/3406325.3451005

Download PDF

Abstract

We present a quantum LDPC code family that has distance Ω(N3/5/polylog(N)) and Θ(N3/5) logical qubits, where N is the code length. This is the first quantum LDPC code construction that achieves distance greater than N1/2 polylog(N). The construction is based on generalizing the homological product of codes to a fiber bundle.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Fiber Bundle Codes: Breaking the $N^{1/2} \operatorname{polylog}(N)$ Barrier for Quantum LDPC Codes 2020 Matthew B. Hastings
Jeongwan Haah
Ryan O’Donnell
+ PDF Chat Quantum LDPC Codes of Almost Linear Distance via Homological Products 2024 Louis Golowich
Venkatesan Guruswami
+ Quantum LDPC Codes with Almost Linear Minimum Distance 2020 Pavel Panteleev
Gleb Kalachev
+ ReShape: a decoder for hypergraph product codes 2021 Armanda O. Quintavalle
Earl T. Campbell
+ Lifting decoders for classical codes to decoders for quantum codes 2021 Armanda O. Quintavalle
Earl T. Campbell
+ PDF Chat Quantum LDPC Codes With Almost Linear Minimum Distance 2021 Pavel Panteleev
Gleb Kalachev
+ PDF Chat Homological product codes 2014 Sergey Bravyi
Matthew B. Hastings
+ Decodable quantum LDPC codes beyond the $\sqrt{n}$ distance barrier using high dimensional expanders 2020 Shai Evra
Tali Kaufman
Gilles Zémor
+ Homological Product Codes 2013 Sergey Bravyi
Matthew B. Hastings
+ Homological Product Codes 2013 Sergey Bravyi
Matthew B. Hastings
+ Non-Clifford and parallelizable fault-tolerant logical gates on constant and almost-constant rate homological quantum LDPC codes via higher symmetries 2023 Guanyu Zhu
Shehryar Sikander
Elia Portnoy
Andrew W. Cross
Benjamin J. Brown
+ Decodable quantum LDPC codes beyond the √n distance barrier using high dimensional expanders. 2020 Shai Evra
Tali Kaufman
Gilles Zémor
+ Quantum Lego Expansion Pack: Enumerators from Tensor Networks 2023 ChunJun Cao
Michael J. Gullans
Brad Lackey
Zitao Wang
+ PDF Chat Decodable Quantum LDPC Codes beyond the $\sqrt{n}$ Distance Barrier Using High-Dimensional Expanders 2022 Shai Evra
Tali Kaufman
Gilles Zémor
+ PDF Chat Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks 2022 ChunJun Cao
Brad Lackey
+ Quantum LDPC Codes for Modular Architectures 2022 Armands Strikis
Lucas Berent
+ PDF Chat Fiber Bundle Fault Tolerance of GKP Codes 2024 Ansgar G. Burchards
Steven T. Flammia
Jonathan Conrad
+ PDF Chat Extending Construction X for Quantum Error-Correcting Codes 2015 Akshay Degwekar
Kenza Guenda
T. Aaron Gulliver
+ On Self-Dual Quantum Codes, Graphs, and Boolean Functions 2005 Lars Eirik Danielsen
+ Lift-Connected Surface Codes 2024 Josias Old
Manuel Rispler
Markus Müller