Adiabatic Invariants for the FPUT and Toda Chain in the Thermodynamic Limit

Type: Article

Publication Date: 2020-09-29

Citations: 16

DOI: https://doi.org/10.1007/s00220-020-03866-2

Abstract

We consider the Fermi-Pasta-Ulam-Tsingou (FPUT) chain composed by $N \gg 1$ particles and periodic boundary conditions, and endow the phase space with the Gibbs measure at small temperature $\beta^{-1}$. Given a fixed ${1\leq m \ll N}$, we prove that the first $m$ integrals of motion of the periodic Toda chain are adiabatic invariants of FPUT (namely they are approximately constant along the Hamiltonian flow of the FPUT) for times of order $\beta$, for initial data in a set of large measure. We also prove that special linear combinations of the harmonic energies are adiabatic invariants of the FPUT on the same time scale, whereas they become adiabatic invariants for all times for the Toda dynamics.

Locations

  • Communications in Mathematical Physics - View - PDF
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ FPU Model and Toda Model: A Survey, a View 2022 Giancarlo Benettin
Antonio Ponno
+ Stages of dynamics in the Fermi-Pasta-Ulam system as probed by the first Toda integral 2019 Helen Christodoulidi
Christos Efthymiopoulos
+ PDF Chat Equilibration of quasi-integrable systems 2019 Tomer Goldfriend
Jorge Kurchan
+ Stages of dynamics in the Fermi-Pasta-Ulam system as probed by the first Toda integral 2018 Helen Christodoulidi
Christos Efthymiopoulos
+ PDF Chat Periodic Orbits in Fermi-Pasta-Ulam-Tsingou Systems 2024 Nachiket Karve
Nathan Rose
David Campbell
+ PDF Chat Adiabatic Times for Markov Chains and Applications 2011 Kyle Bradford
Yevgeniy Kovchegov
+ Stable Adiabatic Times for Markov Chains 2012 Kyle Bradford
Yevgeniy Kovchegov
Thinh Nguyen
+ Stable Adiabatic Times for Markov Chains 2012 Kyle Bradford
Yevgeniy Kovchegov
Thinh Nguyen
+ PDF Chat Exact analysis of adiabatic invariants in the time-dependent harmonic oscillator 2005 Marko Robnik
Valery G. Romanovski
+ Dynamics of periodic Toda chains with a large number of particles 2015 Dario Bambusi
Thomas Kappeler
Tanmoy Paul
+ PDF Chat Birkhoff coordinates for the Toda lattice in the limit of infinitely many particles with an application to FPU 2015 Dario Bambusi
Alberto Maspero
+ Dynamics of the finite Toda molecule over finite fields and a decoding algorithm 1998 Yoshimasa Nakamura
Atsushi Mukaihira
+ PDF Chat Some Analytic Results on the FPU Paradox 2015 Dario Bambusi
A. Carati
Alberto Maiocchi
Alberto Maspero
+ Change of the time for the periodic Toda lattices and natural systems on the plane with higher order integrals of motion 2009 A. V. Tsiganov
+ PDF Chat Generalized hydrodynamics of the classical Toda system 2019 Benjamin Doyon
+ First integrals of generalized Toda chains 1998 V. É. Adler
A. B. Shabat
+ Dynamics of the Classical Toda Lattice 2024
+ Toda Chains in the Jacobi Method 2004 A. V. Tsiganov
+ Infinite Dimensional Toda Systems 1992
+ Adiabatic Approximation for Quasi-Stationary States 1965 G. F. Drukarev

Works That Cite This (13)

Action Title Year Authors
+ PDF Chat Integrable hydrodynamics of Toda chain: case of small systems 2023 Aritra Kundu
+ Wave Turbulence and thermalization in one-dimensional chains 2023 M. Onorato
Yuri V. Lvov
Giovanni Dematteis
Sergio Chibbaro
+ Disordered FPUT-<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.svg" display="inline" id="d1e743"><mml:mi>α</mml:mi></mml:math> Hamiltonian Lattices: Recurrence breakdown and chaotic behavior 2024 N.A. Zulkarnain
H. Susanto
Chris G. Antonopoulos
+ PDF Chat Generalized Hydrodynamics for the Volterra lattice: Ballistic and nonballistic behavior of correlation functions 2024 Guido Mazzuca
+ PDF Chat Second-order asymptotic expansion and thermodynamic interpretation of a fast–slow Hamiltonian system 2022 Matthias Klar
Karsten Matthies
Johannes Zimmer
+ PDF Chat The classical <i>β</i>-ensembles with <i>β</i> proportional to 1/<i>N</i>: From loop equations to Dyson’s disordered chain 2021 Peter J. Forrester
Guido Mazzuca
+ PDF Chat Timescales of Chaos in the Inner Solar System: Lyapunov Spectrum and Quasi-integrals of Motion 2023 Federico Mogavero
Nam H. Hoang
Jacques Laskar
+ PDF Chat Wave Turbulence and thermalization in one-dimensional chains 2023 M. Onorato
Yuri V. Lvov
Giovanni Dematteis
Sergio Chibbaro
+ PDF Chat Korteweg–de Vries and Fermi–Pasta–Ulam–Tsingou: asymptotic integrability of quasi unidirectional waves 2021 Matteo Gallone
Antonio Ponno
Bob Rink
+ KdV and FPU: asymptotic integrability of quasi unidirectional waves 2020 Matteo Gallone
Antonio Ponno
R. Bob