Benford’s Law for coefficients of newforms

Type: Article

Publication Date: 2015-07-30

Citations: 1

DOI: https://doi.org/10.1142/s1793042116500299

View Chat PDF

Abstract

Let [Formula: see text] be a newform of even weight [Formula: see text] on [Formula: see text] without complex multiplication. Let [Formula: see text] denote the set of all primes. We prove that the sequence [Formula: see text] does not satisfy Benford’s Law in any integer base [Formula: see text]. However, given a base [Formula: see text] and a string of digits [Formula: see text] in base [Formula: see text], the set [Formula: see text] has logarithmic density equal to [Formula: see text]. Thus, [Formula: see text] follows Benford’s Law with respect to logarithmic density. Both results rely on the now-proven Sato–Tate Conjecture.

Locations

  • International Journal of Number Theory - View
  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat The error term in the Sato–Tate conjecture 2014 Jesse Thorner
+ Ap\'ery-like numbers and families of newforms with complex multiplication 2018 Alexis Gomez
Dermot McCarthy
Dylan Young
+ PDF Chat A non-ordinary (prime) note 2024 Wadim Zudilin
+ An unconditional explicit bound on the error term in the Sato-Tate conjecture. 2021 Alexandra Hoey
Jonas Iskander
Steven Jin
Fernando Trejos Suárez
+ New Quadratic Forms with High Density of Primes. 1973 Edgar Karst
+ An unconditional explicit bound on the error term in the Sato-Tate conjecture 2021 Alexandra Hoey
Jonas Iskander
Steven Jin
Fernando Trejos Suárez
+ New Estimate for Kloosterman Sums with Primes 2020 Maxim Aleksandrovich Korolev
Марис Евгеньевич Чанга
+ Apéry-like numbers and families of newforms with complex multiplication 2018 Alexis Gomez
Dermot McCarthy
Dylan Young
+ Applications of the Sato-Tate conjecture 2020 Ayla Gafni
Jesse Thorner
Peng‐Jie Wong
+ PDF Chat A BSD formula for high-weight modular forms 2021 Henry Robert Thackeray
+ A Birch and Swinnerton-Dyer formula for high-weight modular forms 2020 Henry Robert Thackeray
+ PDF Chat The explicit Sato–Tate conjecture for primes in arithmetic progressions 2021 Trajan Hammonds
Casimir Kothari
Noah Luntzlara
Steven J. Miller
Jesse Thorner
Hunter Wieman
+ PDF Chat Almost all primes satisfy the Atkin–Serre conjecture and are not extremal 2021 Ayla Gafni
Jesse Thorner
Peng‐Jie Wong
+ Almost all primes satisfy the Atkin-Serre conjecture and are not extremal 2020 Ayla Gafni
Jesse Thorner
Peng‐Jie Wong
+ Number Bases and Binomial Coefficients 1962 John M. Howell
Robert Horton
+ Tables of weight two and weight four newforms 2005 Christian Meyer
+ PDF Chat Modular forms and an explicit Chebotarev variant of the Brun–Titchmarsh theorem 2023 Daniel Hu
Hari R. Iyer
Alexander S. Shashkov
+ PDF Chat Variants of Lehmer's speculation for newforms 2023 Jennifer S. Balakrishnan
William Craig
Ken Ono
Wei‐Lun Tsai
+ The generalized Binet formula for $k$-bonacci numbers 2023 Harold R. Parks
Dean C. Wills
+ Root number bias for newforms 2022 Kimball Martin

Citing (21)

Action Title Year Authors
+ PDF Chat A Statistical Derivation of the Significant-Digit Law 1995 Theodore P. Hill
+ Algebraic Number Theory 1999 Jürgen Neukirch
+ The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and 𝑞-series 2003 Ken Ono
+ PDF Chat One-dimensional dynamical systems and Benford’s law 2004 Arno Berger
Leonid Bunimovich
Theodore P. Hill
+ Introduction to Analytic and Probabilistic Number Theory 2015 Gérald Tenenbaum
+ A Course in Arithmetic 1973 Jean Pierre Serre
+ PDF Chat Benford's law, values of L-functions and the 3x+1 problem 2005 Alex Kontorovich
Steven J. Miller
+ The First Digit Problem 1976 Ralph A. Raimi
+ PDF Chat A Family of Calabi–Yau Varieties and Potential Automorphy II 2011 Tom Barnet-Lamb
David Geraghty
Michael Harris
Richard Taylor
+ PDF Chat The Significant-Digit Phenomenon 1995 Theodore P. Hill
+ PDF Chat The Distribution of Leading Digits and Uniform Distribution Mod 1 1977 Persi Diaconis
+ PDF Chat BENFORD'S LAW FOR THE $3x+1$ FUNCTION 2006 Jeffrey C. Lagarias
K. Soundararajan
+ An Invitation to Modern Number Theory 2006 Steven J. Miller
Ramin Takloo-Bighash
+ PDF Chat Benford’s law for coefficients of modular forms and partition functions 2010 Theresa C. Anderson
Larry Rolen
Ruth Stoehr
+ An Invitation to Modern Number Theory 2020 Steven J. Miller
Ramin Takloo-Bighash
+ Initial Digits for the Sequence of Primes 1972 Roger Whitney
+ Note on the Frequency of Use of the Different Digits in Natural Numbers 1881 Simon Newcomb
+ PDF Chat Benford's law: A “sleeping beauty” sleeping in the dirty pages of logarithmic tables 2017 Tariq Ahmad Mir
M. Ausloos
+ A Course in Arithmetic 1973 Jean-Pierre Serre
+ Initial Digits for the Sequence of Primes 1972 R. E. Whitney
+ PDF Chat Sure monochromatic subset sums 1996 Noga Alon
P. Erdős