The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds

Type: Article

Publication Date: 2022-03-11

Citations: 11

DOI: https://doi.org/10.1007/s00222-022-01108-x

Abstract

Abstract We show that for a generic conformal metric perturbation of a compact hyperbolic 3-manifold $$\Sigma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Σ</mml:mi> </mml:math> with Betti number $$b_1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>b</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:math> , the order of vanishing of the Ruelle zeta function at zero equals $$4-b_1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>-</mml:mo> <mml:msub> <mml:mi>b</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:math> , while in the hyperbolic case it is equal to $$4-2b_1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>4</mml:mn> <mml:mo>-</mml:mo> <mml:mn>2</mml:mn> <mml:msub> <mml:mi>b</mml:mi> <mml:mn>1</mml:mn> </mml:msub> </mml:mrow> </mml:math> . This is in contrast to the 2-dimensional case where the order of vanishing is a topological invariant. The proof uses the microlocal approach to dynamical zeta functions, giving a geometric description of generalized Pollicott–Ruelle resonant differential forms at 0 in the hyperbolic case and using first variation for the perturbation. To show that the first variation is generically nonzero we introduce a new identity relating pushforwards of products of resonant and coresonant 2-forms on the sphere bundle $$S\Sigma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>Σ</mml:mi> </mml:mrow> </mml:math> with harmonic 1-forms on $$\Sigma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Σ</mml:mi> </mml:math> .

Locations

  • arXiv (Cornell University) - View - PDF
  • Apollo (University of Cambridge) - View - PDF
  • DataCite API - View
  • Inventiones mathematicae - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Ruelle zeta function for odd dimensional hyperbolic manifolds with cusps 2008 Yasuro Gon
Jinsung Park
+ PDF Chat Ruelle Zeta Functions of Hyperbolic Manifolds and Reidemeister Torsion 2021 Werner Müller
+ Selberg and Ruelle zeta functions on compact hyperbolic odd dimensional manifolds 2015 Πολυξένη Σπηλιώτη
+ A locally hyperbolic 3-manifold that is not hyperbolic 2018 Tommaso Cremaschi
+ PDF Chat Weyl asymptotics for perturbations of Morse potential and connections to the Riemann zeta function 2023 Rob Rahm
+ The twisted Ruelle zeta function on compact hyperbolic orbisurfaces and Reidemeister-Turaev torsion 2021 Léo Bénard
Jan Frahm
Polyxeni Spilioti
+ PDF Chat Length multiplicities of hyperbolic 3-manifolds 2000 Joseph D. Masters
+ Degree-one maps between hyperbolic 3-manifolds with the same volume limit 2001 Teruhiko Soma
+ PDF Chat Special zeta Mahler functions 2022 Berend Ringeling
+ The Selberg Trace formula and the Ruelle Zeta function for compact hyperbolics 1989 Anton Deitmar
+ On the number zeta(3) 2009 L. A. Gutnik
+ The zeta functions of Ruelle and Selberg for hyperbolic manifolds with cusps 2009 Yasuro Gon
Jinsung Park
+ Combinatorial and geometrical aspects of hyperbolic 3-manifolds 2003 Yair N. Minsky
+ Hyperbolic 3-Manifolds and Their Computational Aspect 2006 G. Robert Meyerhoff
+ PDF Chat Zeta functions in higher Teichmüller theory 2024 Mark Pollicott
Richard Sharp
+ A few remarks on ζ(3) 1996 Yu. V. Nesterenko
+ A Note on the Irrationality of ζ(2) and ζ(3) 1979 Frits Beukers
+ Ruelle zeta function and prime geodesic theorem for hyperbolic manifolds with cusps 2010 Jinsung Park
+ HYPERBOLIC 3-SPACE 1992 Birger Iversen
+ 3 Review of Hyperbolic Geometry in Dimension 2 2012 Valentin Poènaru