Surjective separating maps on noncommutative $L^p$-spaces

Type: Preprint

Publication Date: 2022-01-01

Citations: 0

Abstract

Let $1\leq p<\infty$ and let $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ be a bounded map between noncommutative $L^p$-spaces. If $T$ is bijective and separating (i.e., for any $x,y\in L^p({\mathcal M})$ such that $x^*y=xy^*=0$, we have $T(x)^*T(y)=T(x)T(y)^*=0$), we prove the existence of decompositions ${\mathcal M}={\mathcal M}_1\mathop{\oplus}\limits^\infty{\mathcal M}_2$, ${\mathcal N}={\mathcal N}_1 \mathop{\oplus}\limits^\infty{\mathcal N}_2$ and maps $T_1\colon L^p({\mathcal M}_1)\to L^p({\mathcal N}_1)$, $T_2\colon L^p({\mathcal M}_2)\to L^p({\mathcal N}_2)$, such that $T=T_1+T_2$, $T_1$ has a direct Yeadon type factorisation and $T_2$ has an anti-direct Yeadon type factorisation. We further show that $T^{-1}$ is separating in this case. Next we prove that for any $1\leq p<\infty$ (resp. any $1\leq p\not=2<\infty$), a surjective separating map $T\colon L^p({\mathcal M})\to L^p({\mathcal N})$ is $S^1$-bounded (resp. completely bounded) if and only if there exists a decomposition ${\mathcal M}={\mathcal M}_1 \mathop{\oplus}\limits^\infty{\mathcal M}_2$ such that $T|_{L^p({\tiny {\mathcal M}_1})}$ has a direct Yeadon type factorisation and ${\mathcal M}_2$ is subhomogeneous.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat Surjective separating maps on noncommutative Lp$L^p$‐spaces 2022 Christian Le Merdy
Safoura Zadeh
+ PDF Chat On factorization of separating maps on noncommutative $L^p$-spaces 2022 Christian Le Merdy
Safoura Zadeh
+ PDF Chat ℓ1-contractive maps on noncommutative Lp-spaces 2021 Christian Le Merdy
Safoura Zadeh
+ PDF Chat Ell-1 contractive maps on noncommutative Lp-spaces 2021 Christian Le Merdy
Safoura Zadeh
+ Noncommutative $L_p$-space and operator system 2009 Kyung Hoon Han
+ On factorization of separating maps on noncommutative L^p-spaces 2022 Christian Le Merdy
Safoura Zadeh
+ Commutators on a Separable L p -Space 1971 Charles Schneeberger
+ Nonassociative L -spaces and embeddings in noncommutative L -spaces 2024 CĂ©dric Arhancet
+ Non-commutative $L^p$-spaces 1996 英明 æł‰
+ Non-commutative $L^p$-spaces 1996 Hideaki Izumi
+ Embeddings of non-commutative L p -spaces into non-commutative L 1 -spaces, 1 &lt; p &lt; 2 2000 Marius Junge
+ Contractively decomposable projections on noncommutative L -spaces 2023 CĂ©dric Arhancet
+ Embedding of $C_q$ and $R_q$ into noncommutative $L_p$-spaces, $1\le p 2005 Quanhua Xu
+ PDF Chat Decomposable maps on non-commutative 𝐿_{𝑝}-spaces 2004 Marius Junge
Zhong‐Jin Ruan
+ Embedding of non-commutative L p -spaces: p &lt; 1 2003 Fedor Sukochev
Quanhua Xu
+ C*-algebras generated by multiplication operators and composition operators by functions with self-similar branches 2019 Hiroyasu Hamada
+ PDF Chat Projections, multipliers and decomposable maps on noncommutative L p-spaces 2018 CĂ©dric Arhancet
Christoph Kriegler
+ PDF Chat On subspaces of non-commutative L_p-spaces 2003 Yves Raynaud
Quanhua Xu
+ Contractively decomposable projections on noncommutative $\mathrm{L}^p$-spaces 2019 CĂ©dric Arhancet
+ C*-algebras generated by multiplication operators and composition operators by functions with self-similar branches II 2021 Hiroyasu Hamada

Works That Cite This (0)

Action Title Year Authors