Prescription de courbure des feuilles des laminations : retour sur un théorème de Candel

Type: Article

Publication Date: 2022-07-01

Citations: 2

DOI: https://doi.org/10.5802/aif.3476

Abstract

In the present paper, we revisit a famous theorem by Candel that we generalize by proving that given a compact lamination by hyperbolic surfaces, every negative function smooth inside the leaves and transversally continuous is the curvature function of a unique laminated metric in the corresponding conformal class. We give an interpretation of this result as a continuity result about the solutions of some elliptic PDEs in the so called Cheeger–Gromov topology on the space of complete pointed riemannian manifolds.

Locations

  • arXiv (Cornell University) - View - PDF
  • French digital mathematics library (Numdam) - View - PDF
  • LA Referencia (Red Federada de Repositorios Institucionales de Publicaciones Científicas) - View - PDF
  • Annales de l’institut Fourier - View - PDF

Similar Works

Action Title Year Authors
+ Prescription de courbure des feuilles des laminations: retour sur un théorème de Candel 2020 Sébastien Alvarez
Graham Smith
+ Compactness results in conformal deformations of Riemannian metrics on manifolds with boundaries 2001 Veronica Felli
Mohameden Ould Ahmedou
+ PDF Chat Conformal metrics of prescribed scalar curvature on 4-manifolds: the degree zero case 2017 Mohameden Ould Ahmedou
Hichem Chtioui
+ PDF Chat Compactness results in conformal deformations of Riemannian metrics on manifolds with boundaries 2003 Veronica Felli
Mohameden Ould Ahmedou
+ PDF Chat A Note on Constant Mean Curvature Foliations of Noncompact Riemannian Manifolds 2022 Saïd Ilias
Barbara Nelli
Marc Soret
+ A priori bounds and existence of smooth solutions to a $ L_p $ Aleksandrov problem for Codazzi tensor with log-convex measure 2022 Zhengmao Chen
+ PDF Chat Some remarks on the prescribed mean curvature equation on complete manifolds 2002 Stefano Pigola
Marco Tullio Rigoli
Alberto G. Setti
+ Constant mean curvature surfaces 2016 William H. Meeks
Joaquín Pérez
Giuseppe Tinaglia
+ PDF Chat Constant Mean Curvature Surfaces 2007 John Oprea
+ Conformal Deformation of Noncompact Surfaces with Negative Curvature 1993 Dominique Hulin
+ PDF Chat Godbillon-Vey type functional for almost contact manifolds 2024 Vladimir Rovenski
+ Conformal metrics of prescribed scalar curvature on $4-$manifolds: The degree zero case 2009 Hichem Chtioui
Mohameden Ould Ahmedou
+ A non-vanishing result for the CMC flux 2016 William H. Meeks
Pablo Mira
Joaquín Pérez
+ A non-vanishing result for the CMC flux 2016 William H. Meeks
Pablo Mira
Joaquín Pérez
+ A Variant Prescribed Curvature Flow on Closed Surfaces with Negative Euler Characteristic 2023 Franziska Borer
Peter Elbau
Tobias Weth
+ Some theorems on Codazzi tensors and their applications to hypersurfaces in Riemannian manifold of constant curvature 1987 An-Min Li
+ PDF Chat Constant mean curvature surfaces 2016 William H. Meeks
Joaquín Pérez
Giuseppe Tinaglia
+ Local $C^0$-estimate and existence theorems for some prescribed curvature problems on complete noncompact Riemannian manifolds 2021 Rirong Yuan
+ PDF Chat Metric Ricci Curvature and Flow for PL Manifolds 2014 Emil Saucan
+ PDF Chat Envelopes of positive metrics with prescribed singularities 2017 Julius Ross
David Witt Nyström