Morley Finite Element Method for the von K\'{a}rm\'{a}n Obstacle Problem.

Type: Preprint

Publication Date: 2020-09-07

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Morley Finite Element Method for the von Kármán Obstacle Problem 2020 Carsten Carstensen
Sharat Gaddam
Neela Nataraj
Amiya K. Pani
Devika Shylaja
+ Morley Type Virtual Element Method for Von Kármán Equations 2023 Devika Shylaja
Sarvesh Kumar
+ A Morley finite element method for the displacement obstacle problem of clamped Kirchhoff plates 2013 Susanne C. Brenner
Li-yeng Sung
Hongchao Zhang
Yi Zhang
+ Adaptive Morley FEM for the von K\'{a}rm\'{a}n equations with optimal convergence rates 2019 Carsten Carstensen
Neela Nataraj
+ PDF Chat Finite element error estimates in $$L^2$$ for regularized discrete approximations to the obstacle problem 2019 Dominik Hafemeyer
Christian Kahle
Johannes Pfefferer
+ PDF Chat A stabilised finite element method for the plate obstacle problem 2018 Tom Gustafsson
Rolf Stenberg
Juha Videman
+ PDF Chat Numerical analysis of elastica with obstacle and adhesion effects 2017 Tomoya Kemmochi
+ Numerical analysis of elastica with obstacle and adhesion effects 2016 Tomoya Kemmochi
+ PDF Chat A Nyström-based finite element method on polygonal elements 2018 Akash Anand
Jeffrey S. Ovall
Steffen WeiĂźer
+ PDF Chat Verification of Functional A Posteriori Error Estimates for Obstacle Problem in 1D 2013 Petr Harasim
Jan Valdman
+ PDF Chat A Robust Solver for a Mixed Finite Element Method for the Cahn–Hilliard Equation 2018 Susanne C. Brenner
Amanda E. Diegel
Li-yeng Sung
+ An a posteriori error estimate for the Stokes-Brinkman problem in a polygonal domain 2015 Pavel Burda
Martin Hasal
+ Adaptive Morley FEM for the von Kármán equations with optimal convergence rates 2019 Carsten Carstensen
Neela Nataraj
+ PDF Chat The Hellan--Herrmann--Johnson Method with Curved Elements 2020 Douglas N. Arnold
Shawn W. Walker
+ Finite-dimensional approximation for a class of elliptic obstacle problems 2002 Yisheng Huang
Yuying Zhou
+ Verification of functional a posteriori error estimates for obstacle problem in 1D 2013 Petr Harasim
Jan Valdman
+ Finite element error estimates in $L^2$ for regularized discrete approximations to the obstacle problem 2018 Dominik Hafemeyer
Christian Kahle
Johannes Pfefferer
+ Finite element error estimates in $L^2$ for regularized discrete approximations to the obstacle problem 2018 Dominik Hafemeyer
Christian Kahle
Johannes Pfefferer
+ PDF Chat Analysis of the Morley element for the Cahn–Hilliard equation and the Hele-Shaw flow 2019 Shuonan Wu
Yukun Li
+ PDF Chat Adaptive finite elements for obstacle problems 2024 Tom Gustafsson

Works That Cite This (0)

Action Title Year Authors