Semi-Supervised Empirical Risk Minimization: When can unlabeled data improve prediction?

Type: Preprint

Publication Date: 2020-09-01

Citations: 1

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ PDF Chat Semi-supervised empirical risk minimization: Using unlabeled data to improve prediction 2022 Oren Yuval
Saharon Rosset
+ PDF Chat Optimal and Safe Estimation for High-Dimensional Semi-Supervised Learning 2023 Siyi Deng
Yang Ning
Jiwei Zhao
Heping Zhang
+ Optimal and Safe Estimation for High-Dimensional Semi-Supervised Learning 2020 Siyi Deng
Ning Yang
Jiwei Zhao
Heping Zhang
+ PDF Chat Semi-Supervised U-statistics 2024 Ilmun Kim
Larry Wasserman
Sivaraman Balakrishnan
Matey Neykov
+ PDF Chat Improved estimators for semi-supervised high-dimensional regression model 2022 Ilan Livne
David Azriel
Yair Goldberg
+ Optimal Semi-supervised Estimation and Inference for High-dimensional Linear Regression 2020 Siyi Deng
Yang Ning
Jiwei Zhao
Heping Zhang
+ A General M-estimation Theory in Semi-Supervised Framework 2023 Shanshan Song
Yuanyuan Lin
Yong Zhou
+ A General M-estimation Theory in Semi-Supervised Framework 2023 Shanshan Song
Yuanyuan Lin
Yong Zhou
+ PDF Chat Efficient and adaptive linear regression in semi-supervised settings 2018 Abhishek Chakrabortty
Tianxi Cai
+ PDF Chat Semi-supervised Regression Analysis with Model Misspecification and High-dimensional Data 2024 Ye Tian
Peng Wu
Zhiqiang Tan
+ PDF Chat Projected estimators for robust semi-supervised classification 2017 Jesse H. Krijthe
Marco Loog
+ Enhancing efficiency and robustness in high-dimensional linear regression with additional unlabeled data 2023 Kai Chen
Yuqian Zhang
+ Can semi-supervised learning use all the data effectively? A lower bound perspective 2023 Alexandru Țifrea
Gizem Yüce
Amartya Sanyal
Fanny Yang
+ Improved Estimators for Semi-supervised High-dimensional Regression Model 2021 Ilan Livne
David Azriel
Yair Goldberg
+ Mixed Semi-Supervised Generalized-Linear-Regression with applications to Deep-Learning and Interpolators 2023 Oren Yuval
Saharon Rosset
+ The Effect of Model Misspecification on Semi-Supervised Classification 2011 Ting Yang
Carey E. Priebe
+ How Does Pseudo-Labeling Affect the Generalization Error of the Semi-Supervised Gibbs Algorithm? 2022 Haiyun He
Gholamali Aminian
Yuheng Bu
Miguel Tréfaut Rodrigues
Vincent Y. F. Tan
+ Risk bounds for PU learning under Selected At Random assumption 2022 Olivier Coudray
Christine Keribin
Pascal Massart
Patrick Pamphile
+ Mitigating Overfitting in Supervised Classification from Two Unlabeled Datasets: A Consistent Risk Correction Approach 2019 Nan Lu
Tianyi Zhang
Gang Niu
Masashi Sugiyama
+ Semi-Supervised Learning: the Case When Unlabeled Data is Equally Useful 2020 Jingge Zhu