Beurling numbers whose number of prime factors lies in a specified residue class

Type: Article

Publication Date: 2020-01-01

Citations: 0

DOI: https://doi.org/10.4064/aa200130-15-6

Abstract

We find the asymptotics for $S_{K,c}(x)$, the number of positive integers below $x$ whose number of prime factors is $c \bmod K$. We study this question in the context of Beurling integers.

Locations

  • Acta Arithmetica - View
  • arXiv (Cornell University) - View - PDF
  • Ghent University Academic Bibliography (Ghent University) - View - PDF

Similar Works

Action Title Year Authors
+ Beurling numbers whose number of prime factors lies in a specified residue class 2020 Gregory Debruyne
+ Beurling numbers whose number of prime factors lies in a specified residue class 2020 Gregory Debruyne
+ Integers With A Predetermined Prime Factorization 2012 Eric Naslund
+ Integers With A Predetermined Prime Factorization 2012 Eric Naslund
+ On the estimate $$M(x)=o(x)$$ for Beurling generalized numbers 2024 Jasson Vindas
+ Divisibility of the central binomial coefficient $\binom {2n}{n}$ 2020 Kevin Ford
Sergeĭ Konyagin
+ $M(x)=o(x)$ Estimates for Beurling numbers 2016 Gregory Debruyne
Harold G. Diamond
Jasson Vindas
+ A summation of the number of distinct prime divisors of the lcm 2020 Randell Heyman
+ PDF Chat Chebyshev estimates for Beurling generalized prime numbers 1973 Harold G. Diamond
+ $M(x)=o(x)$ Estimates for Beurling numbers 2016 Gregory Debruyne
Harold G. Diamond
Jasson Vindas
+ PDF Chat Residue classes containing an unexpected number of primes 2012 Daniel Fiorilli
+ The average order of the M\"{o}bius function for Beurling primes 2019 Ammar Ali Neamah
Titus Hilberdink
+ The average order of the Möbius function for Beurling primes 2019 Ammar Ali Neamah
Titus Hilberdink
+ PDF Chat M(x)=o(x) Estimates for Beurling numbers 2018 Gregory Debruyne
Harold G. Diamond
Jasson Vindas
+ On Prime Counting Functions Using Odd $K$-Almost Primes 2024 Tabasam Rashid
Mohammed M. M. Jaradat
Esra Yolaçan
Hijaz Ahmad
+ Croissance asymptotique de nombres de Weil appartenant \`a un corps de nombres fix\'e 2017 John Boxall
+ PDF Chat On Diamond’s L1 Criterion for Asymptotic Density of Beurling Generalized Integers 2019 Gregory Debruyne
Jasson Vindas
+ Theorems About Beurling's Generalized Primes and the Associated Zeta Function 1967 Richard Samuel Hall
+ Divisor problem in arithmetic progressions modulo a prime power 2016 Kui Liu
Igor E. Shparlinski
Tianping Zhang
+ PDF Chat Proof of Existence of Integers Excluding Two Residue Values in a Specific Range 2025 Liang Zhao

Works That Cite This (0)

Action Title Year Authors

Works Cited by This (1)

Action Title Year Authors
+ PDF Chat M(x)=o(x) Estimates for Beurling numbers 2018 Gregory Debruyne
Harold G. Diamond
Jasson Vindas