Channel-Directed Gradients for Optimization of Convolutional Neural Networks

Type: Preprint

Publication Date: 2020-01-01

Citations: 2

DOI: https://doi.org/10.48550/arxiv.2008.10766

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Understanding Optimization of Deep Learning via Jacobian Matrix and Lipschitz Constant 2023 Xianbiao Qi
Jianan Wang
Lei Zhang
+ PDF Chat Adaptive Gradient Regularization: A Faster and Generalizable Optimization Technique for Deep Neural Networks 2024 Huixiu Jiang
Ling Yang
Yu Bao
Rutong Si
Sikun Yang
+ Optimization Methods in Deep Learning: A Comprehensive Overview 2023 David Shulman
+ Gradient Descent: The Ultimate Optimizer 2019 Kartik Chandra
Erik Meijer
Samantha Andow
Emilio Arroyo-Fang
Irene Dea
Johann George
Melissa Grueter
Basil Hosmer
Steffi Stumpos
Alanna Tempest
+ Training Neural Networks with Stochastic Hessian-Free Optimization 2013 Ryan Kiros
+ Continuous vs. Discrete Optimization of Deep Neural Networks 2021 Omer Elkabetz
Nadav Cohen
+ Training Neural Networks with Stochastic Hessian-Free Optimization 2013 Ryan Kiros
+ Stochastic Gradient Descent Optimizes Over-parameterized Deep ReLU Networks 2018 Difan Zou
Yuan Cao
Dongruo Zhou
Quanquan Gu
+ Block-Normalized Gradient Method: An Empirical Study for Training Deep Neural Network 2017 Adams Wei Yu
Lei Huang
Qihang Lin
Ruslan Salakhutdinov
Jaime Carbonell
+ PDF Chat Gradient Networks 2024 Shreyas Chaudhari
Srinivasa Pranav
José M. F. Moura
+ How to guess a gradient 2023 Utkarsh Singhal
Brian Cheung
Kartik Chandra
Jonathan Ragan‐Kelley
Joshua B. Tenenbaum
Tomaso Poggio
Stella X. Yu
+ PDF Chat LPGD: A General Framework for Backpropagation through Embedded Optimization Layers 2024 Anselm Paulus
Georg Martius
Vít Musil
+ Continuous vs. Discrete Optimization of Deep Neural Networks 2021 Omer Elkabetz
Nadav Cohen
+ PDF Chat ChannelDropBack: Forward-Consistent Stochastic Regularization for Deep Networks 2024 Evgeny Hershkovitch Neiterman
Gil Ben-Artzi
+ The Break-Even Point on Optimization Trajectories of Deep Neural Networks 2020 Stanisław Jastrzȩbski
Maciej Szymczak
Stanislav Fort
Devansh Arpit
Jacek Tabor
Kyunghyun Cho
Krzysztof J. Geras
+ Regularization for Deep Learning: A Taxonomy 2017 Jan Kukačka
Vladimir Golkov
Daniel Cremers
+ Regularization for Deep Learning: A Taxonomy 2017 Jan Kukačka
Vladimir Golkov
Daniel Cremers
+ On the Overlooked Structure of Stochastic Gradients 2022 Zeke Xie
Qian-Yuan Tang
Zheng He
Mingming Sun
Ping Li
+ The Break-Even Point on Optimization Trajectories of Deep Neural Networks 2020 Stanisław Jastrzȩbski
Maciej Szymczak
Stanislav Fort
Devansh Arpit
Jacek Tabor
Kyunghyun Cho
Krzysztof J. Geras
+ Channel Normalization in Convolutional Neural Network avoids Vanishing Gradients 2019 Zhenwei Dai
Reinhard Heckel