Central values of L-functions of cubic twists

Type: Article

Publication Date: 2020-08-25

Citations: 1

DOI: https://doi.org/10.1007/s00208-020-02018-0

Abstract

Abstract We are interested in finding for which positive integers D we have rational solutions for the equation $$x^3+y^3=D.$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msup><mml:mi>x</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>=</mml:mo><mml:mi>D</mml:mi><mml:mo>.</mml:mo></mml:mrow></mml:math> The aim of this paper is to compute the value of the L -function $$L(E_D, 1)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:mo>(</mml:mo><mml:msub><mml:mi>E</mml:mi><mml:mi>D</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> for the elliptic curves $$E_D: x^3+y^3=D$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>E</mml:mi><mml:mi>D</mml:mi></mml:msub><mml:mo>:</mml:mo><mml:msup><mml:mi>x</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>+</mml:mo><mml:msup><mml:mi>y</mml:mi><mml:mn>3</mml:mn></mml:msup><mml:mo>=</mml:mo><mml:mi>D</mml:mi></mml:mrow></mml:math> . For the case of p prime $$p\equiv 1\mod 9$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>p</mml:mi><mml:mo>≡</mml:mo><mml:mn>1</mml:mn><mml:mspace/><mml:mo>mod</mml:mo><mml:mspace/><mml:mn>9</mml:mn></mml:mrow></mml:math> , two formulas have been computed by Rodriguez-Villegas and Zagier. We have computed formulas that relate $$L(E_D, 1)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:mo>(</mml:mo><mml:msub><mml:mi>E</mml:mi><mml:mi>D</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> to the square of a trace of a modular function at a CM point. This offers a criterion for when the integer D is the sum of two rational cubes. Furthermore, when $$L(E_D, 1)$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>L</mml:mi><mml:mo>(</mml:mo><mml:msub><mml:mi>E</mml:mi><mml:mi>D</mml:mi></mml:msub><mml:mo>,</mml:mo><mml:mn>1</mml:mn><mml:mo>)</mml:mo></mml:mrow></mml:math> is nonzero we get a formula for the number of elements in the Tate–Shafarevich group and we show that this number is a square when D is a norm in $${\mathbb {Q}}[\sqrt{-3}]$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Q</mml:mi><mml:mo>[</mml:mo><mml:msqrt><mml:mrow><mml:mo>-</mml:mo><mml:mn>3</mml:mn></mml:mrow></mml:msqrt><mml:mo>]</mml:mo></mml:mrow></mml:math> .

Locations

  • Mathematische Annalen - View - PDF
  • arXiv (Cornell University) - View - PDF
  • MPG.PuRe (Max Planck Society) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Central values of $L$-functions of cubic twists 2017 Eugenia Rosu
+ $L$-series values for sextic twists of elliptic curves over $\mathbb{Q}[\sqrt{-3}]$ 2020 Eugenia Rosu
+ $L$-series values for sextic twists of elliptic curves over $\mathbb{Q}[\sqrt{-3}]$ 2020 Eugenia Rosu
+ Integers that can be written as the sum of two rational cubes. 2017 Eugenia Rosu
+ The algebraic parts of the central values of quadratic twists of modular L-functions modulo $$\ell $$ 2022 Dohoon Choi
Young-Min Lee
+ Central values of additive twists of modular $L$-functions 2018 Asbjørn Christian Nordentoft
+ $$p$$ p -Adic interpolation of square roots of central $$L$$ L -values of modular forms 2013 Nick F. Ramsey
+ PDF Chat Nonvanishing of central Hecke L-values and rank of certain elliptic curves 1999 Tonghai Yang
+ $p$-adic interpolation of square roots of central $L$-values of modular forms 2012 Nick F. Ramsey
+ PDF Chat Critical $L$-values for some quadratic twists of gross curves 2020 Andrzej Dąbrowski
Tomasz Jędrzejak
Lucjan Szymaszkiewicz
+ Data for the central values of L-functions of elliptic curves twisted by Dirichlet characters and their algebraic and integer values 2022 Jungbae Nam
+ Data for the central values of L-functions of elliptic curves twisted by Dirichlet characters and their algebraic and integer values 2022 Jungbae Nam
+ Data for the central values of L-functions of elliptic curves twisted by Dirichlet characters and their algebraic and integer values 2022 Jungbae Nam
+ Data for the central values of L-functions of elliptic curves twisted by Dirichlet characters and their algebraic and integer values 2022 Jungbae Nam
+ Data for the central values of L-functions of elliptic curves twisted by Dirichlet characters and their algebraic and integer values 2022 Jungbae Nam
+ PDF Chat Computation of central value of quadratic twists of modular <i>L</i>-functions 2007 Zhengyu Mao
Fernando Rodriguez-Villegas
Gonzalo Tornaría
+ Integrality of $L$-values of twists of the Fermat elliptic curve 2020 Yukako Kezuka
+ Non-vanishing of central L-values of canonical CM elliptic curves with quadratic twists 2016 Cheng Yao
Pin-Chi Hung
+ $L$-Functions of Elliptic Curves Modulo Integers 2021 Félix Baril Boudreau
+ CM values and central L-values of elliptic modular forms 2009 Atsushi Murase