The metric geometry of singularity types

Type: Article

Publication Date: 2020-07-11

Citations: 46

DOI: https://doi.org/10.1515/crelle-2020-0019

Abstract

Abstract Let X be a compact Kähler manifold. Given a big cohomology class <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mo stretchy="false">{</m:mo> <m:mi>θ</m:mi> <m:mo stretchy="false">}</m:mo> </m:mrow> </m:math> {\{\theta\}} , there is a natural equivalence relation on the space of θ-psh functions giving rise to <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi mathvariant="script">𝒮</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>θ</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {\mathcal{S}(X,\theta)} , the space of singularity types of potentials. We introduce a natural pseudo-metric <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>d</m:mi> <m:mi mathvariant="script">𝒮</m:mi> </m:msub> </m:math> {d_{\mathcal{S}}} on <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi mathvariant="script">𝒮</m:mi> <m:mo>⁢</m:mo> <m:mrow> <m:mo stretchy="false">(</m:mo> <m:mi>X</m:mi> <m:mo>,</m:mo> <m:mi>θ</m:mi> <m:mo stretchy="false">)</m:mo> </m:mrow> </m:mrow> </m:math> {\mathcal{S}(X,\theta)} that is non-degenerate on the space of model singularity types and whose atoms are exactly the relative full mass classes. In the presence of positive mass we show that this metric space is complete. As applications, we show that solutions to a family of complex Monge–Ampère equations with varying singularity type converge as governed by the <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mi>d</m:mi> <m:mi mathvariant="script">𝒮</m:mi> </m:msub> </m:math> {d_{\mathcal{S}}} -topology, and we obtain a semicontinuity result for multiplier ideal sheaves associated to singularity types, extending the scope of previous results from the local context.

Locations

  • arXiv (Cornell University) - View - PDF
  • HAL (Le Centre pour la Communication Scientifique Directe) - View - PDF
  • Journal für die reine und angewandte Mathematik (Crelles Journal) - View - PDF

Similar Works

Action Title Year Authors
+ Mabuchi geometry of big cohomology classes 2023 Mingchen Xia
+ The metric geometry of singularity types 2019 Tamás Darvas
Eleonora Di Nezza
Chinh H. Lu
+ The metric geometry of singularity types 2019 Tamás Darvas
Eleonora Di Nezza
Chinh H. Lu
+ PDF Chat The Hausdorff distance and metrics on toric singularity types 2024 Ayo Aitokhuehi
Benjamin Braiman
David Owen Horace Cutler
Tamás Darvas
Robert Deaton
Prakhar Gupta
Jude Horsley
Vasanth Pidaparthy
Jing Tang
+ The Mabuchi Completion of the Space of Kähler Potentials 2014 Tamás Darvas
+ Morse theory and geodesics in the space of Kähler metrics 2014 Tamás Darvas
+ PDF Chat The Mabuchi completion of the space of Kähler potentials 2017 Tamás Darvas
+ PDF Chat Topology of Hypersurface Singularities 2003 Walter D. Neumann
+ PDF Chat The space of Poincaré type Kähler metrics on the complement of a divisor 2014 Hugues Auvray
+ PDF Chat CscK metrics near the canonical class 2025 Bin Guo
Wangjian Jian
Yalong Shi
Jian Song
+ Topology of hypersurface singularities 2017 Walter D. Neumann
+ On the Geometry of Singularities in Quantum Field Theory 2011 Katrin Wendland
+ PDF Chat Hypersurfaces in space forms satisfying the condition Δ𝑥=𝐴𝑥+𝐵 1995 Luis J. Alı́as
Ángel Ferrández
Pascual Lucas
+ On real hypersurfaces of 𝕊²×𝕊² 2022 Dong Gao
Zejun Hu
Hui Ma
Zeke Yao
+ PDF Chat Metric Singularities 1999 Jens Chr. Larsen
+ Topology of hypersurface singularities 2017 Walter D. Neumann
+ Hyperbolic 2-spheres with conical singularities, accessory parameters and Kähler metrics on ℳ_{0,𝓃} 2002 Leon A. Takhtajan
Peter Zograf
+ Metric singularity phenomena in pseudo-Riemannian geometry 1988 Marek Kossowski
+ PDF Chat Singularities in sub-Riemannian geometry 2018 Ludovic Sacchelli
+ Geometry of singularities 1973 Howard L. Resnikoff
Raymond O. Wells