A First-Order Explicit-Implicit Splitting Method for a Convection-Diffusion Problem

Type: Article

Publication Date: 2020-08-05

Citations: 3

DOI: https://doi.org/10.1515/cmam-2020-0009

Abstract

Abstract We analyze a second-order in space, first-order in time accurate finite difference method for a spatially periodic convection-diffusion problem. This method is a time stepping method based on the first-order Lie splitting of the spatially semidiscrete solution. In each time step, on an interval of length k , of this solution, the method uses the backward Euler method for the diffusion part, and then applies a stabilized explicit forward Euler approximation on <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mi>m</m:mi> <m:mo>≥</m:mo> <m:mn>1</m:mn> </m:mrow> </m:math> {m\geq 1} intervals of length <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mfrac> <m:mi>k</m:mi> <m:mi>m</m:mi> </m:mfrac> </m:math> {\frac{k}{m}} for the convection part. With h the mesh width in space, this results in an error bound of the form <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mn>0</m:mn> </m:msub> <m:mo>⁢</m:mo> <m:msup> <m:mi>h</m:mi> <m:mn>2</m:mn> </m:msup> </m:mrow> <m:mo>+</m:mo> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo>⁢</m:mo> <m:mi>k</m:mi> </m:mrow> </m:mrow> </m:math> {C_{0}h^{2}+C_{m}k} for appropriately smooth solutions, where <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:mrow> <m:msub> <m:mi>C</m:mi> <m:mi>m</m:mi> </m:msub> <m:mo>≤</m:mo> <m:mrow> <m:msup> <m:mi>C</m:mi> <m:mo>′</m:mo> </m:msup> <m:mo>+</m:mo> <m:mfrac> <m:msup> <m:mi>C</m:mi> <m:mo>′′</m:mo> </m:msup> <m:mi>m</m:mi> </m:mfrac> </m:mrow> </m:mrow> </m:math> {C_{m}\leq C^{\prime}+\frac{C^{\prime\prime}}{m}} . This work complements the earlier study [V. Thomée and A. S. Vasudeva Murthy, An explicit-implicit splitting method for a convection-diffusion problem, Comput. Methods Appl. Math. 19 2019, 2, 283–293] based on the second-order Strang splitting.

Locations

  • Computational Methods in Applied Mathematics - View - PDF
  • Chalmers Research (Chalmers University of Technology) - View - PDF

Similar Works

Action Title Year Authors
+ PDF Chat A Finite Element Splitting Method for a Convection-Diffusion Problem 2020 Vidar Thomée
+ PDF Chat A Full Space-Time Convergence Order Analysis of Operator Splittings for Linear Dissipative Evolution Equations 2016 Eskil Hansen
Erik Henningsson
+ Analysis of Splitting Algorithms in Convection–Diffusion Problems 2014 A. V. Gladky
+ A symmetric second order accurate implicit scheme for convection-diffusion problems 1980 A. Lin
S. G. Rubin
+ PDF Chat A High-Order Conservative Cut Finite Element Method for Problems in Time-Dependent Domains 2024 Sebastian Myrbäck
Sara Zahedi
+ A Second Order Time-Splitting Technique for Advection-Dispersion Equation on Unstructured Grids 2001 Annamaria Mazzia
Luca Bergamaschi
Mario Putti
+ PDF Chat Time-Splitting Procedures for the Numerical Solution of the 2D Advection-Diffusion Equation 2013 Appanah Rao Appadu
H. H. Gidey
+ A mollification based operator splitting method for convection diffusion equations 2009 Carlos Medina
Carlos E. Mejía
+ PDF Chat A novel three-level time-split approach for solving two-dimensional nonlinear unsteady convection-diffusion-reaction equation 2021 Eric Ngondiep
+ A Higher Order Unfitted Space-Time Finite Element Method for Coupled Surface-Bulk problems 2024 Fabian Heimann
+ PDF Chat Directional diffusion splitting method for advection-diffusion-reaction model 2024 R. H. Drebotiy
H. А. Shynkarenko
+ Iterative Operator Splitting Methods for Differential Equations: Prooftechniques and Applications 2011 Jürgen Geiser
+ PDF Chat $$L^\infty $$ -Stability of IMEX-BDF2 Finite Volume Scheme for Convection-Diffusion Equation 2017 Caterina Calgaro
Meriem Ezzoug
+ EXPLICIT-IMPLICIT DIFFERENCE SCHEMES FOR CONVECTION-DIFFUSION PROBLEMS 1999 A. A. Samarskiĭ
П. Н. Вабищевич
+ A high-order splitting scheme for the advection-diffusion equation. 2001 Yonghong Zheng
Yongming Shen
Qiu Da-hong
+ PDF Chat Overcoming Order Reduction in Diffusion-Reaction Splitting. Part 2: Oblique Boundary Conditions 2016 Lukas Einkemmer
Alexander Ostermann
+ 算子分裂法求解对流-扩散-反应方程 2012 贾宏恩
李开泰
钟贺
+ UPWIND SPLITTING SCHEME FOR CONVECTION-DIFFUSION EQUATIONS 2000 Liang Dong
芮洪兴
程爱杰
+ A Splitting Scheme for Diffusion and Heat Conduction Problems 2019 A. V. Gladky
Yu. A. Gladkaya
+ PDF Chat Error Estimates for First- and Second-Order Lagrange-Galerkin Moving Mesh Schemes for the One-Dimensional Convection-Diffusion Equation 2024 Kharisma Surya Putri
Tatsuki Mizuochi
Niklas Kolbe
Hirofumi Notsu