Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Coresets for Data-efficient Training of Machine Learning Models
Baharan Mirzasoleiman
,
Jeff Bilmes
,
Jure Leskovec
Type:
Preprint
Publication Date:
2019-06-05
Citations:
2
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Coresets for Data-efficient Training of Machine Learning Models
2019
Baharan Mirzasoleiman
Jeff Bilmes
Jure Leskovec
+
Data Sketching for Faster Training of Machine Learning Models.
2019
Baharan Mirzasoleiman
Jeff Bilmes
Jure Leskovec
+
Towards Sustainable Learning: Coresets for Data-efficient Deep Learning
2023
Yu Yang
Hao Kang
Baharan Mirzasoleiman
+
Adaptive Second Order Coresets for Data-efficient Machine Learning
2022
Omead Pooladzandi
David Davini
Baharan Mirzasoleiman
+
MILO: Model-Agnostic Subset Selection Framework for Efficient Model Training and Tuning
2023
Kirshnateja Killamsetty
Alexandre Evfimievski
Tejaswini Pedapati
Kiran Kate
Lucian Popa
Rishabh Iyer
+
PDF
Chat
A Survey of Optimization Methods for Training DL Models: Theoretical Perspective on Convergence and Generalization
2025
Jing Wang
Anna Choromanska
+
Coresets via Bilevel Optimization for Continual Learning and Streaming
2020
Zalán Borsos
Mojmír Mutný
Andreas Krause
+
Coresets via Bilevel Optimization for Continual Learning and Streaming
2020
Zalán Borsos
Mojmír Mutný
Andreas Krause
+
Coreset Selection with Prioritized Multiple Objectives
2023
Xiaobo Xia
Jiale Liu
Shaokun Zhang
Qingyun Wu
Tongliang Liu
+
Accelerated Parallel Optimization Methods for Large Scale Machine Learning
2014
Haipeng Luo
Patrick Haffner
Jean-François Paiement
+
Large-Scale Deep Learning Optimizations: A Comprehensive Survey
2021
Xiaoxin He
Fuzhao Xue
Xiaozhe Ren
Yang You
+
One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning
2021
Chaosheng Dong
Xiaojie Jin
Weihao Gao
Yijia Wang
Hongyi Zhang
Xiang Wu
Shuicheng Yan
Xiaobing Liu
+
PDF
Chat
One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning
2021
Chaosheng Dong
Xiaojie Jin
Weihao Gao
Yijia Wang
Hongyi Zhang
Xiang Wu
Shuicheng Yan
Xiaobing Liu
+
Scalable and Practical Natural Gradient for Large-Scale Deep Learning
2020
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Chuan-Sheng Foo
Rio Yokota
+
PDF
Chat
Scalable and Practical Natural Gradient for Large-Scale Deep Learning
2020
Kazuki Osawa
Yohei Tsuji
Yuichiro Ueno
Akira Naruse
Chuan-Sheng Foo
Rio Yokota
+
RETRIEVE: Coreset Selection for Efficient and Robust Semi-Supervised Learning
2021
Krishnateja Killamsetty
Xujiang Zhao
Feng Chen
Rishabh Iyer
+
PDF
Chat
The Power of Few: Accelerating and Enhancing Data Reweighting with Coreset Selection
2024
Mohammad Jafari
Yimeng Zhang
Yihua Zhang
Sijia Liu
+
The Power of Few: Accelerating and Enhancing Data Reweighting with Coreset Selection
2024
Mohammad Jafari
Yimeng Zhang
Yihua Zhang
Sijia Liu
+
PDF
Chat
Review Non-convex Optimization Method for Machine Learning
2024
Greg B Fotopoulos
Paul Popovich
Nicholas Papadopoulos
+
Reducing BERT Pre-Training Time from 3 Days to 76 Minutes
2019
Yang You
Jing Li
Jonathan Hseu
Xiaodan Song
James Demmel
Cho‐Jui Hsieh
Works That Cite This (2)
Action
Title
Year
Authors
+
Semi-Supervised Data Programming with Subset Selection
2020
Ayush Maheshwari
Oishik Chatterjee
Krishnateja Killamsetty
Ganesh Ramakrishnan
Rishabh Iyer
+
Coresets for Robust Training of Neural Networks against Noisy Labels
2020
Baharan Mirzasoleiman
Kaidi Cao
Jure Leskovec
Works Cited by This (22)
Action
Title
Year
Authors
+
Convex Optimization Algorithms
2015
Dimitri P. Bertsekas
+
Learning Mixtures of Submodular Shells with Application to Document Summarization
2012
Hui Lin
Jeff Bilmes
+
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
2015
Sergey Ioffe
Christian Szegedy
+
PDF
Chat
Why random reshuffling beats stochastic gradient descent
2019
Mert Gürbüzbalaban
Asuman Ozdaglar
Pablo A. Parrilo
+
PDF
Chat
On a Stochastic Approximation Method
1954
Kai Lai Chung
+
Robust Stochastic Approximation Approach to Stochastic Programming
2009
Arkadi Nemirovski
Anatoli Juditsky
Guanghui Lan
Alexander Shapiro
+
PDF
Chat
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
2014
Lin Xiao
Tong Zhang
+
PDF
Chat
Serial and parallel backpropagation convergence via nonmonotone perturbed minimization
1994
O. L. Mangasarian
M. V. Solodov
+
A Stochastic Gradient Method with an Exponential Convergence Rate for Finite Training Sets
2012
Nicolas Le Roux
Mark Schmidt
Francis Bach
+
PDF
Chat
Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey
2011
Dimitri P. Bertsekas