Improving the Speed and Quality of GAN by Adversarial Training

Type: Preprint

Publication Date: 2020-01-01

Citations: 10

DOI: https://doi.org/10.48550/arxiv.2008.03364

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Training Generative Adversarial Networks in One Stage 2021 Chengchao Shen
Youtan Yin
Xinchao Wang
Xubin Li
Jie Song
Mingli Song
+ Training Generative Adversarial Networks in One Stage 2021 Chengchao Shen
Youtan Yin
Xinchao Wang
Xubin Li
Jie Song
Mingli Song
+ PDF Chat StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis 2023 Minguk Kang
Joonghyuk Shin
Jaesik Park
+ StudioGAN: A Taxonomy and Benchmark of GANs for Image Synthesis 2022 Minguk Kang
Joonghyuk Shin
Jaesik Park
+ Progressive Growing of GANs for Improved Quality, Stability, and Variation 2017 Tero Karras
Timo Aila
Samuli Laine
Jaakko Lehtinen
+ Progressive Growing of GANs for Improved Quality, Stability, and Variation 2017 Tero Karras
Timo Aila
Samuli Laine
Jaakko Lehtinen
+ Improved Techniques for Training GANs 2016 Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
+ Improved Techniques for Training GANs 2016 Tim Salimans
Ian Goodfellow
Wojciech Zaremba
Vicki Cheung
Alec Radford
Xi Chen
+ A New Perspective on Stabilizing GANs training: Direct Adversarial Training 2020 Ziqiang Li
Pengfei Xia
Rentuo Tao
Hongjing Niu
Bin Li
+ Differentiable Augmentation for Data-Efficient GAN Training 2020 Shengyu Zhao
Zhijian Liu
Ji Lin
Jun-Yan Zhu
Song Han
+ Differentiable Augmentation for Data-Efficient GAN Training 2020 Shengyu Zhao
Zhijian Liu
Ji Lin
Jun-Yan Zhu
Song Han
+ TinyGAN: Distilling BigGAN for Conditional Image Generation 2020 Ting-Yun Chang
Chi-Jen Lu
+ Generative Adversarial Networks and Adversarial Autoencoders: Tutorial and Survey 2021 Benyamin Ghojogh
Ali Ghodsi
Fakhri Karray
Mark Crowley
+ PDF Chat Generative Adversarial Networks and Adversarial Autoencoders: Tutorial and Survey 2021 Benyamin Ghojogh
Ali Ghodsi
Fakhri Karray
Mark Crowley
+ Generative Adversarial Networks and Adversarial Autoencoders: Tutorial and Survey. 2021 Benyamin Ghojogh
Ali Ghodsi
Fakhri Karray
Mark Crowley
+ Improved Training of Wasserstein GANs 2017 Ishaan Gulrajani
Faruk Ahmed
Martín Arjovsky
Vincent Dumoulin
Aaron Courville
+ PDF Chat Simple Yet Effective Way for Improving the Performance of GAN 2021 Yoon-Jae Yeo
Yong-Goo Shin
Seung Park
Sung-Jea Ko
+ PDF Chat MCGAN: Enhancing GAN Training with Regression-Based Generator Loss 2024 Baoren Xiao
Hao Ni
Weixin Yang
+ Image Augmentations for GAN Training 2020 Zhengli Zhao
Zizhao Zhang
Ting Chen
Sameer Singh
Han Zhang
+ Direct Adversarial Training for GANs 2020 Ziqiang Li
Pengfei Xia
Yue Ming-dao
Bin Li