Soft topological modes protected by symmetry in rigid mechanical metamaterials

Type: Article

Publication Date: 2021-02-17

Citations: 8

DOI: https://doi.org/10.1103/physrevb.103.l060104

Abstract

Topological mechanics can realize soft modes in mechanical metamaterials in which the number of degrees of freedom for particle motion is finely balanced by the constraints provided by interparticle interactions. However, solid objects are generally hyperstatic (or overconstrained). Here, we show how symmetries may be applied to generate topological soft modes even in overconstrained, rigid systems. To do so, we consider non-Hermitian topology based on nonsquare matrices, and design a hyperstatic material in which low-energy modes protected by topology and symmetry appear at interfaces. Our approach presents a novel way of generating softness in robust scale-free architectures suitable for miniaturization to the nanoscale.

Locations

  • Physical review. B./Physical review. B - View
  • arXiv (Cornell University) - View - PDF
  • Pure (University of Bath) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial 2020 Ananya Ghatak
Martin Brandenbourger
Jasper van Wezel
Corentin Coulais
+ Observation of non-Hermitian topology and its bulk-edge correspondence 2019 Ananya Ghatak
Martin Brandenbourger
Jasper van Wezel
Corentin Coulais
+ PDF Chat Controlling the deformation of metamaterials: Corner modes via topology 2018 Adrien Saremi
D. Zeb Rocklin
+ PDF Chat Fully Polarized Topological Isostatic Metamaterials in Three Dimensions 2024 Zheng Tang
Fangyuan Ma
Feng Li
Yugui Yao
Di Zhou
+ Multistable Topological Mechanical Metamaterials 2022 Haning Xiu
Harry Liu
Andrea Poli
Guangchao Wan
Ellen M. Arruda
Xiaoming Mao
Zi Chen
+ Topology shared between classical metamaterials and interacting superconductors 2022 Po-Wei Lo
Chao‐Ming Jian
Michael J. Lawler
+ PDF Chat Transformable topological mechanical metamaterials 2017 D. Zeb Rocklin
Zhou Shangnan
Kai Sun
Xiaoming Mao
+ PDF Chat Classifying topological floppy modes in the continuum 2024 I. C. Tan
Anton Souslov
+ PDF Chat Edge States with Hidden Topology in Spinner Lattices 2024 Udbhav Vishwakarma
Muhammad Irfan
G. Theocharis
Rajesh Chaunsali
+ Topological Monomodes in non-Hermitian Systems 2023 E. Slootman
W. Cherifi
L. Eek
R. Arouca
Emil J. Bergholtz
M. Bourennane
C. Morais Smith
+ PDF Chat Classification of topological phonons in linear mechanical metamaterials 2016 Roman Süsstrunk
Sebastian D. Huber
+ Scalable 3D printing for topological mechanical metamaterials 2022 Achilles Bergne
Guido Baardink
Evripides G. Loukaides
Anton Souslov
+ Scalable 3D printing for topological mechanical metamaterials 2022 Achilles Bergne
Guido Baardink
Evripides G. Loukaides
Anton Souslov
+ Model-free characterization of topological edge and corner states in mechanical networks 2023 Marcelo I. Guzmán
Xiaofei Guo
Corentin Coulais
David Carpentier
Denis Bartolo
+ PDF Chat Model-free characterization of topological edge and corner states in mechanical networks 2024 Marcelo Guzmán
Xiaofei Guo
Corentin Coulais
David Carpentier
Denis Bartolo
+ PDF Chat Geared Topological Metamaterials with Tunable Mechanical Stability 2016 Anne S. Meeussen
Jayson Paulose
Vincenzo Vitelli
+ Non-orientable order and non-Abelian response in frustrated metamaterials 2021 Xiaofei Guo
Marcelo I. Guzmán
David Carpentier
Denis Bartolo
Corentin Coulais
+ Non-orientable order and non-Abelian response in frustrated metamaterials 2021 Xiaofei Guo
Marcelo I. Guzmán
David Carpentier
Denis Bartolo
Corentin Coulais
+ Non-orientable order and non-Abelian response in frustrated metamaterials 2021 Xiaofei Guo
Marcelo Guzmán
David Carpentier
Denis Bartolo
Corentin Coulais
+ PDF Chat Non-Hermitian topological metamaterials with odd elasticity 2020 Di Zhou
Junyi Zhang