Global estimates for the Hartree-Fock-Bogoliubov equations

Type: Preprint

Publication Date: 2020-01-01

Citations: 1

DOI: https://doi.org/10.48550/arxiv.2008.01753

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Global estimates for the Hartree–Fock–Bogoliubov equations 2021 Jacky J. Chong
Manoussos G. Grillakis
Matei Machedon
Zehua Zhao
+ Uniform in $N$ estimates for a Bosonic system of Hartree-Fock-Bogoliubov type 2018 Manoussos G. Grillakis
Matei Machedon
+ Uniform in $N$ estimates for a Bosonic system of Hartree-Fock-Bogoliubov type 2018 Manoussos G. Grillakis
Matei Machedon
+ The mixed fractional Hartree equations in Fourier amalgam and modulation spaces 2023 Divyang G. Bhimani
Hichem Hajaiej
Saikatul Haque
+ The Hartree-Fock equations in modulation spaces. 2019 Divyang G. Bhimani
Manoussos G. Grillakis
Kasso A. Okoudjou
+ PDF Chat The Hartree Equation for Infinitely Many Particles I. Well-Posedness Theory 2014 Mathieu Lewin
Julien Sabin
+ The Wigner-Poisson-Fokker-Planck system: global-in-time solution and dispersive estimates 2005 Anton Arnold
Elidon Dhamo
M. Chiara Manzini
+ Well-posedness in weighted spaces for the generalized Hartree equation with p < 2 2021 Anudeep Kumar Arora
Oscar Riaño
Svetlana Roudenko
+ Well-posedness in weighted spaces for the generalized Hartree equation with $p<2$ 2020 Anudeep Kumar Arora
Oscar Riaño
Svetlana Roudenko
+ Well-posedness in weighted spaces for the generalized Hartree equation with $p&lt;2$ 2020 Anudeep Kumar Arora
Oscar Riaño
Svetlana Roudenko
+ The Hartree-Fock equations in modulation spaces 2019 Divyang G. Bhimani
Manoussos G. Grillakis
Kasso A. Okoudjou
+ PDF Chat Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator 2014 Aurélien Poiret
Didier Robert
Laurent Thomann
+ PDF Chat Uniform in <i>N</i> estimates for a Bosonic system of Hartree–Fock–Bogoliubov type 2019 Manoussos G. Grillakis
Matei Machedon
+ Global well-posedness of the magnetic Hartree equation with non-Strichartz external fields 2015 Alessandro Michelangeli
+ Global well-posedness and blow-up for the hartree equation 2017 Yang Lingyan
Xiaoguang Li
Yonghong Wu
Louis Caccetta
+ Global well-posedness for higher-order Schrödinger equations in weighted $L^2$ spaces 2014 Youngwoo Koh
Ihyeok Seo
+ Strichartz estimates for the 2D and 3D massless Dirac-Coulomb equations and applications 2023 Elena Danesi
+ Global Well-Posedness for the Generalized Fourth-Order Schr\"odinger Equation 2012 Yuzhao Wang
+ PDF Chat Global versions of the Gagliardo-Nirenberg-Sobolev inequality and applications to wave and Klein-Gordon equations 2020 Leonardo Abbrescia
Willie Wai-Yeung Wong
+ PDF Chat Uniform in N global well-posedness of the time-dependent Hartree–Fock–Bogoliubov equations in $$\mathbb {R}^{1+1}$$ R 1 + 1 2018 Jacky J. Chong