Generalizing the Sharp Threshold Phenomenon for the Distributed Complexity of the Lovász Local Lemma

Type: Article

Publication Date: 2020-07-31

Citations: 4

DOI: https://doi.org/10.1145/3382734.3405730

Download PDF

Abstract

Recently, Brandt, Maus and Uitto [PODC'19] showed that, in a restricted setting, the dependency of the complexity of the distributed Lovász Local Lemma (LLL) on the chosen LLL criterion exhibits a sharp threshold phenomenon: They proved that, under the LLL criterion p2d < 1, if each random variable affects at most 3 events, the deterministic complexity of the LLL in the LOCAL model is O(d2 + log* n). In stark contrast, under the criterion p2d ≤ 1, there is a randomized lower bound of Ω(log log n) by Brandt et al. [STOC'16] and a deterministic lower bound of Ω(log n) by Chang, Kopelowitz and Pettie [FOCS'16]. Brandt, Maus and Uitto conjectured that the same behavior holds for the unrestricted setting where each random variable affects arbitrarily many events.

Locations

  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Generalizing the Sharp Threshold Phenomenon for the Distributed Complexity of the Lovász Local Lemma 2020 Sebastian Brandt
Christoph Grunau
Václav Rozhoň
+ PDF Chat A Sharp Threshold Phenomenon for the Distributed Complexity of the Lovász Local Lemma 2019 Sebastian Brandt
Yannic Maus
Jara Uitto
+ A Sharp Threshold Phenomenon for the Distributed Complexity of the Lovász Local Lemma 2019 Sebastian Brandt
Yannic Maus
Jara Uitto
+ Improved Distributed Algorithms for the Lovász Local Lemma and Edge Coloring 2022 Peter Maxwell Davies
+ PDF Chat Deterministic Algorithms for the Lovász Local Lemma 2010 Karthekeyan Chandrasekaran
Navin Goyal
Bernhard Haeupler
+ Short proofs for generalizations of the Lovász Local Lemma: Shearer's condition and cluster expansion 2017 Nicholas J. A. Harvey
J. Vondrák
+ A Lower Bound for the Distributed Lov\'asz Local Lemma 2015 Sebastian Brandt
Orr Fischer
Juho Hirvonen
Barbara Keller
Tuomo Lempiäinen
Joel Rybicki
Jukka Suomela
Jara Uitto
+ Deterministic counting Lovász local lemma beyond linear programming 2023 Kun He
Chunyang Wang
Yitong Yin
+ PDF Chat A lower bound for the distributed Lovász local lemma 2016 Sebastian Brandt
Orr Fischer
Juho Hirvonen
Barbara Keller
Tuomo Lempiäinen
Joel Rybicki
Jukka Suomela
Jara Uitto
+ Deterministic algorithms for the Lovász Local Lemma 2010 Karthekeyan Chandrasekaran
Navin Goyal
Bernhard Haeupler
+ A Simple Algorithmic Proof of the Symmetric Lopsided Lovász Local Lemma 2018 Lefteris M. Kirousis
John Livieratos
+ A Lower Bound for the Distributed Lovász Local Lemma 2015 Sebastian Brandt
Orr Fischer
Juho Hirvonen
Barbara Keller
Tuomo Lempiäinen
Joel Rybicki
Jukka Suomela
Jara Uitto
+ Parallel algorithms and concentration bounds for the lovász local lemma via witness-DAGs 2017 Bernhard Haeupler
David G. Harris
+ PDF Chat Parallel Algorithms and Concentration Bounds for the Lovász Local Lemma via Witness DAGs 2017 Bernhard Haeupler
David G. Harris
+ Improved bounds and parallel algorithms for the Lovasz Local Lemma. 2015 Bernhard Haeupler
David G. Harris
+ Deterministic Algorithms for the Lovasz Local Lemma 2009 Karthekeyan Chandrasekaran
Navin Goyal
Bernhard Haeupler
+ Deterministic Algorithms for the Lovasz Local Lemma 2009 Karthekeyan Chandrasekaran
Navin Goyal
Bernhard Haeupler
+ Parallel algorithms and concentration bounds for the Lovász Local Lemma via witness-DAGs 2017 Bernhard Haeupler
David G. Harris
+ Lopsidependency in the Moser-Tardos framework: Beyond the Lopsided Lovász Local Lemma 2014 David G. Harris
+ Lopsidependency in the Moser-Tardos framework: Beyond the Lopsided Lovasz Local Lemma 2016 David G. Harris