Minimal mass blow-up solutions for nonlinear Schrödinger equations with a singular potential

Type: Preprint

Publication Date: 2021-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2110.12980

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Minimal-mass blow-up solutions for nonlinear Schrödinger equations with an inverse potential 2021 Naoki Matsui
+ Minimal mass blow-up solutions for nonlinear Schr\"{o}dinger equations with an inverse potential. 2020 Naoki Matsui
+ Minimal mass blow-up solutions for double power nonlinear Schr\"{o}dinger equations with an inverse potential 2021 Naoki Matsui
+ On mass - critical NLS with local and non-local nonlinearities 2022 Vladimir Georgiev
Yuan Li
+ Mass concentration and characterization of finite time blow-up solutions for the nonlinear Schrödinger equation with inverse-square potential 2018 Abdelwahab Bensouilah
Van Duong Dinh
+ Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential 2020 Naoki Matsui
+ PDF Chat Minimal mass blow-up solutions for nonlinear Schrödinger equations with a potential 2023 Naoki Matsui
+ Minimal mass blow-up solutions for double power nonlinear Schrödinger equations with an inverse power potential 2021 Naoki Matsui
+ A minimal mass blow-up solution on a nonlinear quantum star graph 2023 François Genoud
Stefan Le Coz
Julien Royer
+ Minimal mass blow-up solutions for the $L^2$-critical NLS with the Delta potential for radial data in one dimension 2021 Xingdong Tang
Guixiang Xu
+ Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power 1993 Franck Merle
+ Normalized solution to the Schödinger equation with potential and general nonlinear term: Mass super-critical case 2021 Yanheng Ding
Xuexiu Zhong
+ PDF Chat Blow-up solutions with minimal mass for nonlinear Schrödinger equation with variable potential 2021 Jingjing Pan
Jian Zhang
+ Remarks on minimal mass blow up solutions for a double power nonlinear Schrödinger equation 2020 Naoki Matsui
+ PDF Chat Minimal mass blow-up solutions for the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="mml1" display="inline" overflow="scroll" altimg="si1.gif"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup></mml:math>critical NLS with inverse-square potential 2017 Elek Csobo
François Genoud
+ PDF Chat Lower bounds for the $L^2$ minimal periodic blow-up solutions of critical nonlinear Schrödinger equation 2002 Christophe Antonini
+ Minimal mass blow-up solutions for nonlinear Schrödinger equations with a Hartree nonlinearity 2021 Naoki Matsui
+ PDF Chat Limit behavior of blow-up solutions for critical nonlinear Schrödinger equation with harmonic potential 2006 Xiaoguang Li
Jian Zhang
+ PDF Chat Minimal-mass blow-up solutions for inhomogeneous nonlinear Schrödinger equations with growing potentials 2023 Naoki Matsui
+ PDF Chat Ground state solution of critical Schrödinger equation with singular potential 2021 Yu Su