Experimental kernel-based quantum machine learning in finite feature space

Type: Article

Publication Date: 2020-07-23

Citations: 61

DOI: https://doi.org/10.1038/s41598-020-68911-5

Abstract

We implement an all-optical setup demonstrating kernel-based quantum machine learning for two-dimensional classification problems. In this hybrid approach, kernel evaluations are outsourced to projective measurements on suitably designed quantum states encoding the training data, while the model training is processed on a classical computer. Our two-photon proposal encodes data points in a discrete, eight-dimensional feature Hilbert space. In order to maximize the application range of the deployable kernels, we optimize feature maps towards the resulting kernels' ability to separate points, i.e., their resolution, under the constraint of finite, fixed Hilbert space dimension. Implementing these kernels, our setup delivers viable decision boundaries for standard nonlinear supervised classification tasks in feature space. We demonstrate such kernel-based quantum machine learning using specialized multiphoton quantum optical circuits. The deployed kernel exhibits exponentially better scaling in the required number of qubits than a direct generalization of kernels described in the literature.

Locations

  • Scientific Reports - View - PDF
  • PubMed Central - View
  • arXiv (Cornell University) - View - PDF
  • Europe PMC (PubMed Central) - View - PDF
  • PubMed - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ PDF Chat Benchmarking quantum machine learning kernel training for classification tasks 2024 Diego Álvarez-Estévez
+ PDF Chat Enhancing Quantum Machine Learning: The Power of Non-Linear Optical Reproducing Kernels 2024 Shahram Dehdashti
Prayag Tiwari
Kareem H. El Safty
Peter Bruza
Janis Nötzel
+ PDF Chat Continuous-variable quantum kernel method on a programmable photonic quantum processor 2024 Keitaro Anai
Shion Ikehara
Yoshichika Yano
Daichi Okuno
Shuntaro Takeda
+ PDF Chat Continuous-variable quantum kernel method on a programmable photonic quantum processor 2024 Keitaro Anai
Shion Ikehara
Yoshichika Yano
Daichi Okuno
Shuntaro Takeda
+ Quantum Kernel Machine Learning With Continuous Variables 2024 Laura J. Henderson
R. N. Goel
Sally Shrapnel
+ Quantum classifier with tailored quantum kernel 2019 Carsten Blank
Daniel K. Park
June‐Koo Kevin Rhee
Francesco Petruccione
+ PDF Chat Fock state-enhanced expressivity of quantum machine learning models 2022 Beng Yee Gan
Daniel Leykam
Dimitris G. Angelakis
+ Quantum classifier with tailored quantum kernel. 2019 Carsten Blank
Daniel K. Park
June‐Koo Kevin Rhee
Francesco Petruccione
+ Quantum kernels with squeezed-state encoding for machine learning 2021 Long Hin Li
Dan-Bo Zhang
Z. D. Wang
+ PDF Chat Experimental quantum-enhanced kernels on a photonic processor 2024 Zhenghao Yin
Iris Agresti
Giovanni de Felice
Douglas Brown
Alexis Toumi
Ciro Pentangelo
Simone Piacentini
Andrea Crespi
Francesco Ceccarelli
Roberto Osellame
+ Large-scale quantum machine learning 2021 Tobias Haug
Chris N. Self
M. S. Kim
+ Quantum machine learning of large datasets using randomized measurements 2021 Tobias Haug
Chris N. Self
M. S. Kim
+ PDF Chat Quantum machine learning of large datasets using randomized measurements 2023 Tobias Haug
Chris N. Self
M. S. Kim
+ PDF Chat Quadratic speed-ups in quantum kernelized binary classification 2024 Jungyun Lee
Daniel K. Park
+ Exponential concentration and untrainability in quantum kernel methods 2022 Supanut Thanasilp
Samson Wang
M. Cerezo
Zoë Holmes
+ Training Quantum Embedding Kernels on Near-Term Quantum Computers 2021 Thomas Hubregtsen
David Wierichs
Elies Gil-Fuster
Peter-Jan H. S. Derks
Paul K. Faehrmann
Johannes Jakob Meyer
+ Numerical evidence against advantage with quantum fidelity kernels on classical data 2022 Lucas Slattery
Ruslan Shaydulin
Shouvanik Chakrabarti
Marco Pistoia
Sami Khairy
Stefan M. Wild
+ The Power of One Qubit in Machine Learning 2019 Roohollah Ghobadi
Jaspreet S. Oberoi
Ehsan Zahedinejhad
+ Quadratic Speed‐ups in Quantum Kernelized Binary Classification 2024 Jungyun Lee
Daniel K. Park
+ PDF Chat Experimental Machine Learning of Quantum States 2018 Jun Gao
Lu‐Feng Qiao
Zhi‐Qiang Jiao
Yue-Chi Ma
Cheng-Qiu Hu
Ruo-Jing Ren
Ai-Lin Yang
Hao Tang
Man‐Hong Yung
Xian‐Min Jin

Works That Cite This (39)

Action Title Year Authors
+ PDF Chat Kernel-based quantum regressor models learning non-Markovianity 2023 Diego Tancara
Hossein T. Dinani
Ariel Norambuena
F. F. Fanchini
RaĂșl Coto
+ PDF Chat Quantum machine learning with adaptive linear optics 2021 Ulysse Chabaud
Damian Markham
Adel Sohbi
+ PDF Chat A quantum-enhanced support vector machine for galaxy classification 2023 M. H. Hassanshahi
Marcin Jastrzebski
Sarah Malik
O. Lahav
+ PDF Chat Training quantum embedding kernels on near-term quantum computers 2022 Thomas Hubregtsen
David Wierichs
Elies Gil-Fuster
Peter-Jan H. S. Derks
Paul K. Faehrmann
Johannes Jakob Meyer
+ PDF Chat Experimental quantum kernel trick with nuclear spins in a solid 2021 Takeru Kusumoto
Kosuke Mitarai
Keisuke Fujii
Masahiro Kitagawa
Makoto Negoro
+ PDF Chat A versatile single-photon-based quantum computing platform 2024 Nicolas Maring
Andreas Fyrillas
Mathias Pont
Edouard Ivanov
Petr Stepanov
Nico Margaria
William Hease
Anton Pishchagin
A. Lemaı̂tre
I. Sagnes
+ PDF Chat Recent advances for quantum classifiers 2021 Weikang Li
Dong-Ling Deng
+ Exponentially Improved Efficient and Accurate Machine Learning for Quantum Many-body States with Provable Guarantees 2023 Yanming Che
Clemens Gneiting
Franco Nori
+ PDF Chat Quantum machine learning of large datasets using randomized measurements 2023 Tobias Haug
Chris N. Self
M. S. Kim
+ PDF Chat Qudit Machine Learning 2024 SebastiĂĄn Roca-Jerat
Juan RomĂĄn-Roche
David Zueco

Works Cited by This (28)

Action Title Year Authors
+ PDF Chat Experimental Realization of a Quantum Support Vector Machine 2015 Zhaokai Li
Xiaomei Liu
Nanyang Xu
Jiangfeng Du
+ PDF Chat Detecting Entanglement in Spatial Interference 2011 Clemens Gneiting
Klaus Hornberger
+ PDF Chat Entanglement-Based Machine Learning on a Quantum Computer 2015 Xiang Cai
Dian Wu
Zu-En Su
M.-C. Chen
Xi‐Lin Wang
Li Li
N.-L. Liu
Chao‐Yang Lu
Jian-Wei Pan
+ PDF Chat Quantum Support Vector Machine for Big Data Classification 2014 Patrick Rebentrost
Masoud Mohseni
Seth Lloyd
+ PDF Chat Quantum machine learning 2017 Jacob Biamonte
PĂ©ter Wittek
Nicola Pancotti
Patrick Rebentrost
Nathan Wiebe
Seth Lloyd
+ PDF Chat Quantum machine learning: a classical perspective 2018 Carlo Ciliberto
Mark Herbster
Alessandro Davide Ialongo
Massimiliano Pontil
Andrea Rocchetto
Simone Severini
Leonard Wossnig
+ PDF Chat Deep learning with coherent nanophotonic circuits 2017 Yichen Shen
Nicholas C. Harris
Scott A. Skirlo
Mihika Prabhu
Tom Baehr‐Jones
Michael Hochberg
Xin Sun
Shijie Zhao
Hugo Larochelle
Dirk Englund
+ PDF Chat Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets 2017 Abhinav Kandala
Antonio Mezzacapo
Kristan Temme
Maika Takita
Markus Brink
Jerry M. Chow
Jay Gambetta
+ Reinforcement learning in a large-scale photonic recurrent neural network 2018 J. Trujillo Bueno
S. Maktoobi
Luc Froehly
Ingo Fischer
Maxime Jacquot
Laurent Larger
Daniel Brunner
+ PDF Chat Quantum Computing in the NISQ era and beyond 2018 John Preskill