Nordhaus–Gaddum-Type Relations for Arithmetic-Geometric Spectral Radius and Energy

Type: Article

Publication Date: 2020-07-16

Citations: 5

DOI: https://doi.org/10.1155/2020/5898735

Abstract

Spectral graph theory plays an important role in engineering. Let <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mi>G</mml:mi></mml:math> be a simple graph of order <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M2"><mml:mi>n</mml:mi></mml:math> with vertex set <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M3"><mml:mi>V</mml:mi><mml:mo>=</mml:mo><mml:mfenced open="{" close="}" separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mn>1</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>,</mml:mo><mml:mo>…</mml:mo><mml:mo>,</mml:mo><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>n</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:math>. For <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M4"><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo>∈</mml:mo><mml:mi>V</mml:mi></mml:math>, the degree of the vertex <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M5"><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:math>, denoted by <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M6"><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:math>, is the number of the vertices adjacent to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M7"><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:math>. The arithmetic-geometric adjacency matrix <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M8"><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>a</mml:mi><mml:mi>g</mml:mi></mml:mrow></mml:msub><mml:mfenced open="(" close=")" separators="|"><mml:mrow><mml:mi>G</mml:mi></mml:mrow></mml:mfenced></mml:math> of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M9"><mml:mi>G</mml:mi></mml:math> is defined as the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M10"><mml:mi>n</mml:mi><mml:mo>×</mml:mo><mml:mi>n</mml:mi></mml:math> matrix whose <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M11"><mml:mfenced open="(" close=")" separators="|"><mml:mrow><mml:mi>i</mml:mi><mml:mo>,</mml:mo><mml:mi>j</mml:mi></mml:mrow></mml:mfenced></mml:math> entry is equal to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M12"><mml:mfenced open="(" close=")" separators="|"><mml:mrow><mml:mfenced open="(" close=")" separators="|"><mml:mrow><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:mo>+</mml:mo><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:mfenced></mml:mrow><mml:mo>/</mml:mo><mml:mrow><mml:mn>2</mml:mn><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub><mml:msub><mml:mrow><mml:mi>d</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt></mml:mrow></mml:mfenced></mml:math> if the vertices <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M13"><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>i</mml:mi></mml:mrow></mml:msub></mml:math> and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M14"><mml:msub><mml:mrow><mml:mi>v</mml:mi></mml:mrow><mml:mrow><mml:mi>j</mml:mi></mml:mrow></mml:msub></mml:math> are adjacent and 0 otherwise. The arithmetic-geometric spectral radius and arithmetic-geometric energy of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M15"><mml:mi>G</mml:mi></mml:math> are the spectral radius and energy of its arithmetic-geometric adjacency matrix, respectively. In this paper, some new upper bounds on arithmetic-geometric energy are obtained. In addition, we present the Nordhaus–Gaddum-type relations for arithmetic-geometric spectral radius and arithmetic-geometric energy and characterize corresponding extremal graphs.

Locations

  • Mathematical Problems in Engineering - View - PDF
  • DOAJ (DOAJ: Directory of Open Access Journals) - View

Similar Works

Action Title Year Authors
+ PDF Chat New Bounds for the Generalized Distance Spectral Radius/Energy of Graphs 2022 Yuzheng Ma
Yubin Gao
Yanling Shao
+ On the<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si7.svg"><mml:mrow><mml:msub><mml:mi>D</mml:mi><mml:mi>α</mml:mi></mml:msub><mml:mo linebreak="goodbreak">−</mml:mo></mml:mrow></mml:math>spectral radius of two types of graphs 2020 Rui Qin
Dan Li
Jixiang Meng
+ Some Nordhaus-Gaddum type results of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msub><mml:mi>A</mml:mi><mml:mi>α</mml:mi></mml:msub></mml:math>-eigenvalues of weighted graphs 2020 Changxiang He
Wang Wenyan
Yuying Li
Lele Liu
+ Spectral radius of graphs forbidden C7 or <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:msubsup><mml:mrow><mml:mi>C</mml:mi></mml:mrow><mml:mrow><mml:mn>6</mml:mn></mml:mrow><mml:mrow><mml:mo>△</mml:mo></mml:mrow></mml:msubsup></mml:math> 2023 Junying Lu
Lu Lu
Yongtao Li
+ On the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e115" altimg="si24.svg"><mml:msub><mml:mrow><mml:mi>A</mml:mi></mml:mrow><mml:mrow><mml:mi>α</mml:mi></mml:mrow></mml:msub></mml:math>-spectral radius of graphs with given size 2023 Hongzhang Chen
Jianxi Li
Peng Huang
+ Binding number, odd <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e246" altimg="si8.svg"><mml:mrow><mml:mo>[</mml:mo><mml:mn>1</mml:mn><mml:mo>,</mml:mo><mml:mi>b</mml:mi><mml:mo>]</mml:mo></mml:mrow></mml:math>-factors and the distance spectral radius 2024 Yanling Hu
Yuke Zhang
+ Nordhaus–Gaddum type result for the matching number of a graph 2017 Huiqiu Lin
Jinlong Shu
Baoyindureng Wu
+ A sharp upper bound for the spectral radius of the Nordhaus–Gaddum type 2000 Yuan Hong
Jinlong Shu
+ The Gray graph is a unit-distance graph 2025 Leah Wrenn Berman
Gábor Gévay
Tomaž Pisanski
+ On the $ A_{\alpha^-} $-spectra of graphs and the relation between $ A_{\alpha} $- and $ A_{\alpha^-} $-spectra 2024 Wafaa M. Fakieh
Zakeiah Alkhamisi
Hanaa Alashwali
+ Spectral Properties with the Difference between Topological Indices in Graphs 2020 Akbar Jahanbani
Roslan Hasni
Zhibin Du
S. M. Sheikholeslami
+ A note on the $A_α$-spectral radius of graphs 2018 Huiqiu Lin
Xing Huang
Jie Xue
+ PDF Chat Spectral Graph Complexity 2019 Anton Tsitsulin
Davide Mottin
Panagiotis Karras
Alexander M. Bronstein
Emmanuel Müller
+ Spanning <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e20" altimg="si15.svg"><mml:mi>k</mml:mi></mml:math>-trees and distance signless Laplacian spectral radius of graphs 2024 Sizhong Zhou
Yuli Zhang
Hongxia Liu
+ On spectral radius of generalized arithmetic–geometric matrix of connected graphs and its applications 2024 Xiaodan Chen
Shuting Zhang
+ The A-spectral radius of graphs with a prescribed number of edges for<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mfrac><mml:mrow><mml:mn>1</mml:mn></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mfrac><mml:mo>≤</mml:mo><mml:mi>α</mml:mi><mml:mo>≤</mml:mo><mml:mn>1</mml:mn></mml:math> 2021 Dan Li
Rui Qin
+ PDF Chat On the distance α-spectral radius of a connected graph 2020 Haiyan Guo
Bo Zhou
+ On the spectral radius, energy and Estrada index of the arithmetic–geometric matrix of a graph 2021 Zhen Lin
Bo Deng
Lianying Miao
He Li
+ Graph spectra and the graph energy 2018 Stephan Wagner
Hua Wang
+ Nordhaus–Gaddum type results for graph irregularities 2018 Yuede Ma
Shujuan Cao
Yongtang Shi
Matthias Dehmer
Chengyi Xia