Box-scaling as a proxy of finite-size correlations

Type: Preprint

Publication Date: 2020-07-16

Citations: 2

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Box-scaling as a proxy of finite-size correlations 2020 Daniel Martı́n
Tiago L. Ribeiro
Sergio A. Cannas
Tomás S. Grigera
Dietmar Plenz
Dante R. Chialvo
+ PDF Chat Box scaling as a proxy of finite size correlations 2021 Daniel A. Mártin
Tiago L. Ribeiro
Sergio A. Cannas
Tomás S. Grigera
Dietmar Plenz
Dante R. Chialvo
+ PDF Chat When correlations exceed system size: finite-size scaling in free boundary conditions above the upper critical dimension 2024 Yulian Honchar
Bertrand Berche
Yurij Holovatch
Ralph Kenna
+ When correlations exceed system size: finite-size scaling in free boundary conditions above the upper critical dimension 2023 Yulian Honchar
Bertrand Berche
Yurij Holovatch
Ralph Kenna
+ Scale-free correlations in the dynamics of a small (N ~ 10000) cortical network 2022 Sabrina Camargo
Daniel A. Mártin
Eyisto J. Aguilar Trejo
Aylen de Florian
Maciej A. Nowak
Sergio A. Cannas
Tomás S. Grigera
Dante R. Chialvo
+ PDF Chat Finite-Size Scaling as a Way to Probe Near-Criticality in Natural Swarms 2014 Alessandro Attanasi
Andrea Cavagna
Lorenzo Del Castello
Irene Giardina
Stefania Melillo
Leonardo Parisi
Oliver Pohl
Bruno Rossaro
Edward Shen
Edmondo Silvestri
+ Efficient method of finding scaling exponents from finite-size Monte-Carlo simulations 2008 Jaan Kalda
+ Finite-size correlation behavior near a critical point: a simple metric for monitoring the state of a neural network 2022 Eyisto J. Aguilar Trejo
Daniel A. Mártin
Tomás S. Grigera
Sergio A. Cannas
Dante R. Chialvo
+ Finite-size scaling of correlation functions in finite systems 2018 Xin Zhang
Gaoke Hu
Yongwen Zhang
XiaoTeng Li
Xiaosong Chen
+ PDF Chat Finite-size correlation behavior near a critical point: A simple metric for monitoring the state of a neural network 2022 Eyisto J. Aguilar Trejo
Daniel A. Mártin
Dulara De Zoysa
Zac Bowen
Tomás S. Grigera
Sergio A. Cannas
Wolfgang Losert
Dante R. Chialvo
+ Unveiling the intrinsic dynamics of biological and artificial neural networks: from criticality to optimal representations 2023 Guillermo B. Morales
Serena Di Santo
Miguel A. Muñoz
+ PDF Chat Finite-size and correlation-induced effects in mean-field dynamics 2011 Jonathan Touboul
G. Bard Ermentrout
+ PDF Chat Random-Length Random Walks and Finite-Size Scaling in High Dimensions 2018 Zongzheng Zhou
Jens Grimm
Sheng Fang
Youjin Deng
Timothy M. Garoni
+ PDF Chat Recursive-search method for ferromagnetic ising systems: combination with a finite-size scaling approach 2002 P. C. da Silva
U. L. Fulco
Fernando Nobre
L. R. da Silva
L. S. Lucena
+ PDF Chat Scaling and Finite-Size Scaling above the Upper Critical Dimension 2015 Ralph Kenna
Bertrand Berche
+ PDF Chat Finite-size scaling above the upper critical dimension in Ising models with long-range interactions 2015 Emilio Flores-Sola
Bertrand Berche
Ralph Kenna
Martin Weigel
+ PDF Chat Scaling and Finite-Size Scaling above the Upper Critical Dimension 2024 Ralph Kenna
Bertrand Berche
+ PDF Chat Benford's law gives better scaling exponents in phase transitions of quantum<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>X</mml:mi><mml:mi>Y</mml:mi></mml:mrow></mml:math>models 2014 Ameya Deepak Rane
Utkarsh Mishra
Anindya Biswas
Aditi Sen
Ujjwal Sen
+ PDF Chat Efficient method of finding scaling exponents from finite-size Monte-Carlo simulations 2013 I. Mandre
Jaan Kalda
+ PDF Chat Self-organized bistability on globally coupled higher-order networks 2024 Md Sayeed Anwar
Nikita Frolov
Alexander E. Hramov
Dibakar Ghosh

Works That Cite This (0)

Action Title Year Authors