An example concerning Fourier analytic criteria for translational tiling

Type: Article

Publication Date: 2021-12-03

Citations: 4

DOI: https://doi.org/10.4171/rmi/1318

Abstract

It is well known that the functions f \in L^1(\mathbb{R}^d) whose translates along a lattice \Lambda form a tiling, can be completely characterized in terms of the zero set of their Fourier transform. We construct an example of a discrete set \Lambda \subset \mathbb{R} (a small perturbation of the integers) for which no characterization of this kind is possible: there are two functions f, g \in L^1(\mathbb{R}) whose Fourier transforms have the same set of zeros, but such that f + \Lambda is a tiling while g + \Lambda is not.

Locations

  • Revista Matemática Iberoamericana - View - PDF
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ An example concerning Fourier analytic criteria for translational tiling 2020 Nir Lev
+ The Study of Translational Tiling with Fourier Analysis 2004 Mihail N. Kolountzakis
+ Tilings by translation 2010 Mihail N. Kolountzakis
Máté Matolcsi
+ Tilings by translation 2010 Mihail N. Kolountzakis
Máté Matolcsi
+ The study of translational tiling with Fourier Analysis 2003 Mihail N. Kolountzakis
+ Fourier Analysis on Lattices and Beyond 2025 Arne Hendrickx
+ PDF Chat Discrete Fourier analysis with lattices on planar domains 2010 Huiyuan Li
Jiachang Sun
Yuan Xu
+ PDF Chat On Non-Periodic Tilings of the Real Line by a Function 2015 Mihail N. Kolountzakis
Nir Lev
+ A counterexample to the periodic tiling conjecture 2022 Rachel Greenfeld
Terence Tao
+ PDF Chat A counterexample to the periodic tiling conjecture 2024 Rachel Greenfeld
Terence Tao
+ A counterexample to the periodic tiling conjecture (announcement) 2022 Rachel Greenfeld
Terence Tao
+ Local translations associated to spectral sets 2013 Dorin Ervin Dutkay
John Haussermann
+ PDF Chat Local translations associated to spectral sets 2014 Dorin Ervin Dutkay
John Haussermann
+ Functions tiling simultaneously with two arithmetic progressions 2022 Mark Mordechai Etkind
Nir Lev
+ Number-Theoretic Transforms of Prescribed Length 1988 Reiner Creutzburg
Manfred Tasche
+ The structure of translational tilings in $\mathbb{Z}^d$ 2020 Rachel Greenfeld
Terence Tao
+ Weighted Zak transforms and the dual tiling condition 2020 Dae Gwan Lee
Götz E. Pfander
+ Unitary groups and spectral sets 2012 Dorin Ervin Dutkay
Palle E. T. Jørgensen
+ Unitary groups and spectral sets 2012 Dorin Ervin Dutkay
Palle E. T. Jørgensen
+ Fourier Transform: Some Progress of a Chameleonic Math-Object 2024 Edoardo Niccolai