Embedding the Heisenberg group into a bounded-dimensional Euclidean space with optimal distortion

Type: Article

Publication Date: 2020-07-03

Citations: 1

DOI: https://doi.org/10.4171/rmi/1200

Abstract

Let H := \Big(\begin{smallmatrix} 1 & \mathbb{R} & \mathbb{R} \\ 0 & 1 & \mathbb{R} \\ 0 & 0 & 1 \end{smallmatrix}\Big) denote the Heisenberg group with the usual Carnot–Carathéodory metric d . It is known (since the work of Pansu and Semmes) that the metric space (H,d) cannot be embedded in a bilipschitz fashion into a Hilbert space; however, from a general theorem of Assouad, for any 0 < \varepsilon \leq 1/2 , the snowflaked metric space (H,d^{1-\varepsilon}) embeds into an infinite-dimensional Hilbert space with distortion O( \varepsilon^{-1/2} ) . This distortion bound was shown by Austin, Naor, and Tessera to be sharp for the Heisenberg group H . Assouad's argument allows \ell^2 to be replaced by \mathbb{R}^{D(\varepsilon)} for some dimension D(\varepsilon) dependent on \varepsilon . Naor and Neiman showed that D could be taken independent of \varepsilon , at the cost of worsening the bound on the distortion to O( \varepsilon^{-1-c_D} ) , where c_D \to 0 as D \to \infty . In this paper we show that one can in fact retain the optimal distortion bound O( \varepsilon^{-1/2} ) and still embed into a bounded-dimensional space \mathbb{R}^D , answering a question of Naor and Neiman. As a corollary, the discrete ball of radius R \geq 2 in \Gamma := \Big(\begin{smallmatrix} 1 & \mathbb{Z} & \mathbb{Z} \\ 0 & 1 & \mathbb{Z} \\ 0 & 0 & 1 \end{smallmatrix}\Big) can be embedded into a bounded-dimensional space \mathbb{R}^D with the optimal distortion bound of O(\log^{1/2} R) . The construction is iterative, and is inspired by the Nash–Moser iteration scheme as used in the isometric embedding problem; this scheme is needed in order to counteract a certain "loss of derivatives" problem in the iteration.

Locations

  • Revista Matemática Iberoamericana - View
  • arXiv (Cornell University) - View - PDF
  • Revista Matemática Iberoamericana - View
  • arXiv (Cornell University) - View - PDF
  • Revista Matemática Iberoamericana - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Embedding the Heisenberg group into a bounded dimensional Euclidean space with optimal distortion 2018 Terence Tao
+ PDF Sharp quantitative nonembeddability of the Heisenberg group into superreflexive Banach spaces 2013 Tim Austin
Assaf Naor
Romain Tessera
+ Sharp quantitative nonembeddability of the Heisenberg group into superreflexive Banach spaces 2010 Tim Austin
Assaf Naor
Romain Tessera
+ Sharp quantitative nonembeddability of the Heisenberg group into superreflexive Banach spaces 2010 Tim Austin
Assaf Naor
Romain Tessera
+ Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces 2015 Enrico Le Donne
Sean Li
Tapio Rajala
+ Ahlfors-regular distances on the Heisenberg group without biLipschitz pieces 2015 Enrico Le Donne
Sean Li
Tapio Rajala
+ PDF Ahlfors‐regular distances on the Heisenberg group without biLipschitz pieces 2017 Enrico Le Donne
Sean Li
Tapio Rajala
+ Isometries and isometric embeddings of Wasserstein spaces over the Heisenberg group 2023 Zoltán M. Balogh
Tamás Titkos
Dániel Virosztek
+ Sharp geometric rigidity of isometries on Heisenberg groups 2012 Д. В. Исангулова
S. K. Vodopyanov
+ PDF Chat Sharp geometric rigidity of isometries on Heisenberg groups 2012 Д. В. Исангулова
S. K. Vodopyanov
+ PDF Chat Hardy-Type Inequalities for the Carnot–Carathéodory Distance in the Heisenberg Group 2020 Valentina Franceschi
Dario Prandi
+ Markov convexity and nonembeddability of the Heisenberg group 2014 Sean Li
+ Mappings with bounded distortion on Heisenberg groups 2000 N. S. Dairbekov
+ The Geometry of Heisenberg Groups 2008 Ernst Binz
Sonja Pods
+ Revisiting Hardy's theorem for the Heisenberg group 2002 Sundaram Thangavelu
+ Sub-Riemannian Balls on the Heisenberg Groups: An Invariant Volume 2014 E. F. Sachkova
+ Sharpened Trudinger–Moser Inequalities on the Euclidean Space and Heisenberg Group 2021 Lu Chen
Guozhen Lu
Maochun Zhu
+ Geometric mapping theory of the Heisenberg group, sub-Riemannian manifolds, and hyperbolic spaces 2014 Anton Lukyanenko
+ On mappings with bounded distortion on the Heisenberg group 2000 N. S. Dairbekov
+ On the Isoperimetric Inequality in the Heisenberg Group 2011 Xinhe Zhu

Works Cited by This (0)

Action Title Year Authors