Generators for the $C^m$-closures of ideals

Type: Article

Publication Date: 2020-06-30

Citations: 5

DOI: https://doi.org/10.4171/rmi/1218

Abstract

Let \mathscr{R} denote the ring of real polynomials on \mathbb{R}^{n} . Fix m\geq 0 , and let A_{1},\ldots,A_{M}\in\mathscr{R} . The C^{m} -closure of (A_{1},\ldots,A_{M}) , denoted here by [A_{1},\ldots,A_{M};C^{m}] , is the ideal of all f\in \mathscr{R} expressible in the form f=F_{1}A_{1}+\cdots +F_{M}A_{M} with each F_{i}\in C^{m}(\mathbb{R}^{n}) . In this paper we exhibit an algorithm for computing generators for [A_{1},\ldots,A_{M};C^{m}] .

Locations

  • Revista Matemática Iberoamericana - View
  • arXiv (Cornell University) - View - PDF

Similar Works

Action Title Year Authors
+ Generators for the $C^m$-closures of Ideals 2019 Charles Fefferman
Garving K. Luli
+ Generators for the $C^m$-closures of Ideals 2019 Charles Fefferman
Garving K. Luli
+ ACCR ring of the forms $$\mathcal {A}[X]$$ A [ X ] and $$\mathcal {A}[[X]]$$ A [ [ X ] ] 2017 Achraf Malek
Ahmed Hamed
Ali Benhissi
+ The clean elements of the ring $\mathcal R(L)$ 2023 Ali Akbar Estaji
Maryam Taha
+ Subrings of $\mathbb{C}$ Generated by Angles 2016 Jackson Bahr
Arielle Roth
+ $D(-1)$-tuples in the ring $\bZ[\sqrt{;-k};]$ with $k>0$ 2021 Yasutsugu Fujita
Ivan Soldo
+ On the Computation of Minimal Free Resolutions with Integer Coefficients 2019 Soda Balla Diop
Guy Mobouale Wamba
Andre S. E. Mialebama Bouesso
Djiby Sow
+ On the number of generators of powers of an ideal 2017 Jürgen Herzog
Maryam Mohammadi Saem
Naser Zamani
+ On the number of generators of powers of an ideal 2017 Jürgen Herzog
Maryam Mohammadi Saem
Naser Zamani
+ The Ring K$$ [\textit{x}_{1}, . . . ,\textit{x}_{\textit{n}}] $$ 2024 Andrea Bandini
Patrizia Gianni
Enrico Sbarra
+ Notes on a minimal set of generators for the radical ideal defining the diagonal locus of $(\C^2)^n$ 2009 Kyungyong Lee
Li Li
+ $D(-1)$-tuples in the ring $\mathbb{Z}[\sqrt{-k}]$ with $k>0$ 2022 Yasutsugu Fujita
Ivan Soldo
+ Ideal C*-algebras 1968 Mary Catherine Flanders
+ The ring <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e19" altimg="si10.svg"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">M</mml:mi></mml:mrow><mml:mrow><mml:mn>8</mml:mn><mml:mi>k</mml:mi><mml:mo>+</mml:mo><mml:mn>4</mml:mn></mml:mrow></mml:msub><mml:mrow><mml:mo>(</mml:mo><mml:msub><mml:mrow><mml:mi mathvariant="double-struck">Z</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub><mml:mo>)</mml:mo></mml:mrow></mml:mrow></mml:… 2019 Yaroslav Shitov
+ (m,n) Rings 1974 J. J. Leeson
+ Description of the closed ideals of the algebra ?? (n) 1984 F. A. Shamoyan
+ Refined $F_5$ Algorithms for Ideals of Minors of Square Matrices 2023 Sriram Gopalakrishnan
Vincent Neiger
Mohab Safey El Din
+ Real ideals in the maximal ring of quotients of $C(X)$ 1973 Giuseppe De Marco
+ PDF Chat An FGLM-like algorithm for computing the radical of a zero-dimensional ideal 2017 Teo Mora
+ Generators of ideals and multiplicities 1981 Giuseppe Valla