Projects
Reading
People
Chat
SU\G
(đ¸)
/K¡U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Concrete Dropout
Yarin Gal
,
Jiri Hron
,
Alex Kendall
Type:
Preprint
Publication Date:
2017-05-22
Citations:
139
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Concrete Dropout
2017
Yarin Gal
Jiri Hron
Alex Kendall
+
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
2015
Yarin Gal
Zoubin Ghahramani
+
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
2015
Yarin Gal
Zoubin Ghahramani
+
Consistent Dropout for Policy Gradient Reinforcement Learning
2022
Matthew Hausknecht
Nolan Wagener
+
Bayesian dropout
2022
Tue Herlau
Mikkel N. Schmidt
Morten Mørup
+
Wasserstein Dropout
2020
Joachim Sicking
Maram Akila
Maximilian Pintz
Tim Wirtz
Asja Fischer
Stefan Wrobel
+
Variational Dropout Sparsifies Deep Neural Networks
2017
Dmitry Molchanov
Arsenii Ashukha
Dmitry Vetrov
+
Dropout Injection at Test Time for Post Hoc Uncertainty Quantification in Neural Networks
2023
Emanuele Ledda
Giorgio Fumera
Fabio Roli
+
Learnable Bernoulli Dropout for Bayesian Deep Learning
2020
Shahin Boluki
Randy Ardywibowo
Siamak Zamani Dadaneh
Mingyuan Zhou
Xiaoning Qian
+
A Bayesian Neural Network based on Dropout Regulation
2021
Claire Theobald
FrĂŠdĂŠric Pennerath
Brieuc ConanâGuez
Miguel Couceiro
Amedeo Napoli
+
PDF
Chat
Advanced Dropout: A Model-free Methodology for Bayesian Dropout Optimization
2021
Jiyang Xie
Zhanyu Ma
Jianjun Lei
Guoqiang Zhang
JingâHao Xue
ZhengâHua Tan
Jun Guo
+
Bayesian Dropout
2015
Tue Herlau
Morten Mørup
Mikkel N. Schmidt
+
Information Dropout: learning optimal representations through noise
2017
Alessandro Achille
Stefano Soatto
+
Dropout as a Bayesian Approximation: Appendix
2015
Yarin Gal
Zoubin Ghahramani
+
Dropout Prediction Uncertainty Estimation Using Neuron Activation Strength
2021
Haichao Yu
Zhe Chen
Lin Dong
Gil I. Shamir
Jie Han
+
Generalized Dropout
2016
Suraj Srinivas
R. Venkatesh Babu
+
Generalized Dropout
2016
Suraj Srinivas
R. Venkatesh Babu
+
Contextual Dropout: An Efficient Sample-Dependent Dropout Module
2021
Xinjie Fan
Shujian Zhang
Korawat Tanwisuth
Xiaoning Qian
Mingyuan Zhou
+
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
2017
Yingzhen Li
Yarin Gal
+
PDF
Chat
Dropout Sampling for Robust Object Detection in Open-Set Conditions
2018
Dimity Miller
Lachlan Nicholson
Feras Dayoub
Niko SĂźnderhauf
Works That Cite This (91)
Action
Title
Year
Authors
+
PDF
Chat
The MBPEP: a deep ensemble pruning algorithm providing high quality uncertainty prediction
2019
Ruihan Hu
Qijun Huang
Sheng Chang
Hao Wang
Jin He
+
PDF
Chat
Introspective Robot Perception Using Smoothed Predictions from Bayesian Neural Networks
2022
Jianxiang Feng
Maximilian Durner
ZoltĂĄn-Csaba MĂĄrton
Ferenc BĂĄlint-BenczĂŠdi
Rudolph Triebel
+
PDF
Chat
Bayesian Neural Networks: An Introduction and Survey
2020
Ethan Goan
Clinton Fookes
+
Confidence Scoring Using Whitebox Meta-models with Linear Classifier Probes
2018
Tongfei Chen
JiĹĂ NavrĂĄtil
Vijay Iyengar
Karthikeyan Shanmugam
+
Pushing the bounds of dropout
2018
GĂĄbor Melis
Charles Blundell
TomĂĄĹĄ KoÄiskĂ˝
Karl Moritz Hermann
Chris Dyer
Phil Blunsom
+
PlaNet of the Bayesians: Reconsidering and Improving Deep Planning Network by Incorporating Bayesian Inference
2020
Masashi Okada
Norio Kosaka
Tadahiro Taniguchi
+
PDF
Chat
Quantifying Uncertainty in Discrete-Continuous and Skewed Data with Bayesian Deep Learning
2018
Thomas Vandal
Evan Kodra
Jennifer Dy
Sangram Ganguly
Ramakrishna Nemani
Auroop R. Ganguly
+
Siamese Capsule Networks
2018
James Oâ Neill
+
Bayesian Policy Gradients via Alpha Divergence Dropout Inference
2017
Peter Henderson
Thang Doan
Riashat Islam
David Meger
+
Robustness to Out-of-Distribution Inputs via Task-Aware Generative Uncertainty
2018
Rowan McAllister
Gregory Kahn
Jeff Clune
Sergey Levine
Works Cited by This (11)
Action
Title
Year
Authors
+
The Variational Bayesian EM Algorithm for Incomplete Data: With Application to Scoring Graphical Model Structures
2003
Matthew J. Beal
Zoubin Ghahramani
+
PDF
Chat
Likelihood ratio gradient estimation for stochastic systems
1990
Peter W. Glynn
+
PDF
Chat
Going deeper with convolutions
2015
Christian Szegedy
Wei Liu
Yangqing Jia
Pierre Sermanet
Scott Reed
Dragomir Anguelov
Dumitru Erhan
Vincent Vanhoucke
Andrew Rabinovich
+
Categorical Reparameterization with Gumbel-Softmax
2016
Eric Jang
Shixiang Gu
Ben Poole
+
The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables
2016
Chris J. Maddison
Andriy Mnih
Yee Whye Teh
+
Uncertainty-Aware Reinforcement Learning for Collision Avoidance
2017
Gregory Kahn
Adam Villaflor
Vitchyr H. Pong
Pieter Abbeel
Sergey Levine
+
What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision
2017
Alex Kendall
Yarin Gal
+
Variational Bayesian Inference with Stochastic Search
2012
John Paisley
David M. Blei
Michael I. Jordan
+
Dropout Inference in Bayesian Neural Networks with Alpha-divergences
2017
Yingzhen Li
Yarin Gal
+
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
2014
Danilo Jimenez Rezende
Shakir Mohamed
Daan Wierstra