Properties of basins of attraction for planar discrete cooperative maps

Type: Article

Publication Date: 2020-06-17

Citations: 2

DOI: https://doi.org/10.3934/dcdsb.2020202

Abstract

<p style='text-indent:20px;'>It is shown that locally asymptotically stable equilibria of planar cooperative or competitive maps have basin of attraction <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{B} $\end{document}</tex-math></inline-formula> with relatively simple geometry: the boundary of each component of <inline-formula><tex-math id="M2">\begin{document}$ \mathcal{B} $\end{document}</tex-math></inline-formula> consists of the union of two unordered curves, and the components of <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{B} $\end{document}</tex-math></inline-formula> are not comparable as sets. The boundary curves are Lipschitz if the map is of class <inline-formula><tex-math id="M4">\begin{document}$ C^1 $\end{document}</tex-math></inline-formula>. Further, if a periodic point is in <inline-formula><tex-math id="M5">\begin{document}$ \partial \mathcal{B} $\end{document}</tex-math></inline-formula>, then <inline-formula><tex-math id="M6">\begin{document}$ \partial\mathcal{B} $\end{document}</tex-math></inline-formula> is tangential to the line through the point with direction given by the eigenvector associated with the smaller characteristic value of the map at the point. Examples are given.

Locations

  • Discrete and Continuous Dynamical Systems - B - View - PDF

Similar Works

Action Title Year Authors
+ Global dynamics results for a class of planar cooperative maps 2023 M. R. S. Kulenović
Jacqueline L. Marcotte
Orlando Merino
+ PDF Chat INVARIANT MANIFOLDS FOR COMPETITIVE DISCRETE SYSTEMS IN THE PLANE 2010 M. R. S. Kulenović
Orlando Merino
+ Two characteristics of planar intertwined basins of attraction 2012 Changming Ding
+ Coupled Logistic Map: A Review and Numerical facts 2019 Neptalí Romero
Jesús Silva
Ramón Vivas
+ A proof for a theorem on intertwining property of attraction basin boundaries in planar dynamical systems 2002 Xiao‐Song Yang
+ PDF Chat Stability analysis of coupled map lattices at locally unstable fixed points 2005 Harald Atmanspacher
Thomas Filk
H. Scheingraber
+ On competitive discrete systems in the plane. I. Invariant Manifolds 2012 Gabriel Lugo
Frank J. Palladino
+ Stability and basins of attraction of invariant surfaces 2006 Rubén Díaz‐Sierra
Annibal Figueiredo
T. M. Rocha Filho
+ Invariant Graphs and Dynamics of a Family of Continuous Piecewise Linear Planar Maps 2025 Anna Cima
Armengol Gasull
Vı́ctor Mañosa
Francesc Mañosas
+ Fractal Basins and Boundaries in 2D Maps inspired in Discrete Population Models 2010 Danièle Fournier-Prunaret
Ricardo López‐Ruiz
+ PDF Chat Maps with Vanishing Denominator and Their Applications 2016 Nicolò Pecora
Fabio Tramontana
+ PDF Chat Critical parameters of the synchronisation's stability for coupled maps in regular graphs 2022 Juan Gancio
Nicolás Rubido
+ Planar Maps 1991 Jack K. Hale
Hüseyin Koçak
+ Periodic Solutions of Periodic Competitive and Cooperative Systems 1986 Hal L. Smith
+ Estabilidade assintótica global e continuação de soluções periódicas em sistemas suaves por partes com duas zonas no plano 2016 Alexander Fernandes da Fonseca
+ INTERTWINED BASINS OF ATTRACTION IN PLANAR SYSTEMS 2009 Changming Ding
+ PDF Chat Permanence and universal classification of discrete-time competitive systems via the carrying simplex 2019 Mats Gyllenberg
Jifa Jiang
Lei Niu
Ping Yan
+ Attraction Domain and Riddled Basins in Two-Dimensional Coupled Mapping Systems 2024 璟 陈
+ Smoothly intertwined basins of attraction in a prey-predator model 1995 Laura Tedeschini Lalli
+ Piecewise Monotonic Maps with a Common Piecewise Constant Stationary Density 2023 Zi Wang
Jiu Ding
Noah H. Rhee