Two dimensional nonlinear Schrödinger equation with spatial white noise potential and fourth order nonlinearity

Type: Article

Publication Date: 2022-04-09

Citations: 6

DOI: https://doi.org/10.1007/s40072-022-00251-z

Abstract

Abstract We consider NLS on $$\mathbb {T}^2$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>T</mml:mi> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:math> with multiplicative spatial white noise and nonlinearity between cubic and quartic. We prove global existence, uniqueness and convergence almost surely of solutions to a family of properly regularized and renormalized approximating equations. In particular we extend a previous result by A. Debussche and H. Weber available in the cubic and sub-cubic setting.

Locations

  • Stochastic Partial Differential Equations Analysis and Computations - View - PDF

Similar Works

Action Title Year Authors
+ Two dimensional nonlinear Schrödinger equation with spatial white noise potential and fourth order nonlinearity 2020 Nikolay Tzvetkov
Nicola Visciglia
+ PDF Chat Global well-posedness of the 2D nonlinear Schrödinger equation with multiplicative spatial white noise on the full space 2024 Arnaud Debussche
Ruoyuan Liu
Nikolay Tzvetkov
Nicola Visciglia
+ The logarithmic Schr{ö}dinger equation with spatial white noise on the full space 2023 Quentin Chauleur
Antoine Mouzard
+ The Schr{ö}dinger equation with spatial white noise potential 2016 Arnaud Debussche
Hendrik Weber
+ Global well-posedness of the 2D nonlinear Schrödinger equation with multiplicative spatial white noise on the full space 2023 Ruoyuan Liu
+ Global well-posedness of one-dimensional cubic fractional nonlinear Schrödinger equations in negative Sobolev spaces 2023 Enguerrand Brun
Guopeng Li
Ruoyuan Liu
Younes Zine
+ A nonlinear Schrödinger equation with fractional noise 2021 Aurélien Deya
Nicolas Schaeffer
Laurent Thomann
+ PDF Chat Probabilistic well-posedness of generalized cubic nonlinear Schr\"odinger equations with strong dispersion using higher order expansions 2024 Jean-Baptiste Castéras
Juraj Földes
Itamar Oliveira
Gennady Uraltsev
+ Higher order expansion for the probabilistic local well-posedness theory for a cubic nonlinear Schrödinger equation 2024 Jean-Baptiste Castéras
Juraj Földes
Gennady Uraltsev
+ Almost sure local well-posedness for cubic nonlinear Schrodinger equation with higher order operators 2022 Jean‐Baptiste Casteras
Juraj Földes
Gennady Uraltsev
+ PDF Chat Higher order expansions for the probabilistic local Cauchy theory of the cubic nonlinear Schrödinger equation on ℝ³ 2019 Árpád Bényi
Tadahiro Oh
Oana Pocovnicu
+ Ill-posedness for the nonlinear Schrödinger equation with quadratic non-linearity in low dimensions 2014 Tsukasa Iwabuchi
Takayoshi Ogawa
+ PDF Chat Normal form approach to the one-dimensional periodic cubic nonlinear Schrödinger equation in almost critical Fourier-Lebesgue spaces 2021 Tadahiro Oh
Yuzhao Wang
+ PDF Chat An introduction to the two-dimensional Schrödinger equation with nonlinear point interactions 2018 Raffaele Carlone
Michele Correggi
Lorenzo Tentarelli
+ Wellposedness of the cubic Gross-Pitaevskii equation with spatial white noise on $\mathbb{R}^2$ 2023 Pierre Mackowiak
+ 1D quintic nonlinear Schrödinger equation with white noise dispersion 2011 Arnaud Debussche
Yoshio Tsutsumi
+ Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line 2016 Antoine Choffrut
Oana Pocovnicu
+ A remark on triviality for the two-dimensional stochastic nonlinear wave equation 2020 Tadahiro Oh
Mamoru Okamoto
Tristan Robert
+ Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line 2016 Antoine Choffrut
Oana Pocovnicu
+ Global dynamics of the $2d$ NLS with white noise potential and generic polynomial nonlinearity 2022 N. Tzvetkov
N. Visciglia