Efficient non-conjugate Gaussian process factor models for spike count data using polynomial approximations

Type: Preprint

Publication Date: 2019-01-01

Citations: 5

DOI: https://doi.org/10.48550/arxiv.1906.03318

Locations

  • arXiv (Cornell University) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Efficient non-conjugate Gaussian process factor models for spike count data using polynomial approximations 2019 Stephen Keeley
David M. Zoltowski
Yiyi Yu
Jacob L. Yates
Spencer L. Smith
Jonathan W. Pillow
+ PDF Chat Conditionally-Conjugate Gaussian Process Factor Analysis for Spike Count Data via Data Augmentation 2024 Yididiya Y. Nadew
Xuhui Fan
Christopher J. Quinn
+ Non-parametric generalized linear model. 2020 Matthew Dowling
Yuan Zhao
Il Memming Park
+ Non-parametric generalized linear model 2020 Matthew Dowling
Yuan Zhao
Il Memming Park
+ Linear Time GPs for Inferring Latent Trajectories from Neural Spike Trains 2023 Matthew Dowling
Yuan Zhao
Il Memming Park
+ PDF Chat Fast Multi-Group Gaussian Process Factor Models 2024 Evren Gokcen
Anna I. Jasper
Adam Kohn
Christian K. Machens
Byron M. Yu
+ PDF Chat Quantifying Signal-to-Noise Ratio in Neural Latent Trajectories via Fisher Information 2024 Hyungju Jeon
Il Memming Park
+ PDF Chat Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal Stochastic Linear Mixing Model 2021 Rui Meng
Kristofer E. Bouchard
+ Bayesian Inference in High-Dimensional Time-Serieswith the Orthogonal Stochastic Linear Mixing Model 2021 Rui Meng
Kristofer E. Bouchard
+ PDF Chat An Efficient and Flexible Spike Train Model Via Empirical Bayes 2021 Qi She
Xiaoli Wu
Beth Jelfs
Adam S. Charles
Rosa H. M. Chan
+ Bayesian inference for multi-level non-stationary Gaussian processes 2019 Karla Monterrubio Gómez
+ PDF Chat Variational Latent Gaussian Process for Recovering Single-Trial Dynamics from Population Spike Trains 2017 Yuan Zhao
Il Memming Park
+ Network Modeling of Short Over-Dispersed Spike-Counts: A Hierarchical Parametric Empirical Bayes Framework 2016 Qi She
Beth Jelfs
Adam S. Charles
Rosa H. M. Chan
+ Neural Likelihoods for Multi-Output Gaussian Processes 2019 Martin Jankowiak
Jacob R. Gardner
+ A Unifying Framework for Sparse Gaussian Process Approximation using Power Expectation Propagation. 2016 Thang D. Bui
Josiah Yan
Richard E. Turner
+ Bayesian latent structure discovery from multi-neuron recordings 2016 Scott W. Linderman
Ryan P. Adams
Jonathan W. Pillow
+ PDF Chat Learning Coupled Subspaces for Multi-Condition Spike Data 2024 Yididiya Y. Nadew
Xuhui Fan
Christopher J. Quinn
+ PDF Chat Single-neuron deep generative model uncovers underlying physics of neuronal activity in Ca imaging data 2025 Jordi Abante
Angelo Piga
Beata Roś
Clara F. López-León
Josep M. Canals
Jordi Soriano
+ Linked Deep Gaussian Process Emulation for Model Networks 2023 Deyu Ming
Daniel Williamson
+ PDF Chat Markovian Gaussian Process: A Universal State-Space Representation for Stationary Temporal Gaussian Process 2024 Weihan Li
Yule Wang
Chengrui Li
Anqi Wu

Works Cited by This (0)

Action Title Year Authors