PointAugment: An Auto-Augmentation Framework for Point Cloud Classification

Type: Article

Publication Date: 2020-06-01

Citations: 141

DOI: https://doi.org/10.1109/cvpr42600.2020.00641

Abstract

We present PointAugment, a new auto-augmentation framework that automatically optimizes and augments point cloud samples to enrich the data diversity when we train a classification network. Different from existing auto-augmentation methods for 2D images, PointAugment is sample-aware and takes an adversarial learning strategy to jointly optimize an augmentor network and a classifier network, such that the augmentor can learn to produce augmented samples that best fit the classifier. Moreover, we formulate a learnable point augmentation function with a shape-wise transformation and a point-wise displacement, and carefully design loss functions to adopt the augmented samples based on the learning progress of the classifier. Extensive experiments also confirm PointAugment's effectiveness and robustness to improve the performance of various networks on shape classification and retrival.

Locations

  • arXiv (Cornell University) - View - PDF
  • 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) - View

Similar Works

Action Title Year Authors
+ PointAugment: an Auto-Augmentation Framework for Point Cloud Classification 2020 Ruihui Li
Xianzhi Li
Pheng‐Ann Heng
Chi‐Wing Fu
+ Learning-Based Biharmonic Augmentation for Point Cloud Classification 2023 Jiacheng Wei
Guosheng Lin
Henghui Ding
Jie Hu
Kim–Hui Yap
+ Regularization Strategy for Point Cloud via Rigidly Mixed Sample 2021 Dogyoon Lee
Jaeha Lee
Junhyeop Lee
Hyeongmin Lee
Minhyeok Lee
Sungmin Woo
Sangyoun Lee
+ Regularization Strategy for Point Cloud via Rigidly Mixed Sample 2021 Dogyoon Lee
Jaeha Lee
Junhyeop Lee
Hyeongmin Lee
Minhyeok Lee
Sungmin Woo
Sangyoun Lee
+ PDF Chat PseudoAugment: Learning to Use Unlabeled Data for Data Augmentation in Point Clouds 2022 Zhaoqi Leng
Shuyang Cheng
Benjamin Caine
Weiyue Wang
Zhang Xiao
Jonathon Shlens
Mingxing Tan
Dragomir Anguelov
+ Advancements in Point Cloud Data Augmentation for Deep Learning: A Survey 2023 Qinfeng Zhu
Lei Fan
Ningxin Weng
+ Point Cloud Augmentation with Weighted Local Transformations 2021 Sihyeon Kim
Sanghyeok Lee
Dasol Hwang
Jaewon Lee
Seong Jae Hwang
Hyunwoo J. Kim
+ PDF Chat Point Cloud Augmentation with Weighted Local Transformations 2021 Sihyeon Kim
Sanghyeok Lee
Dasol Hwang
Jaewon Lee
Seong Jae Hwang
Hyunwoo J. Kim
+ Joint data and feature augmentation for self-supervised representation learning on point clouds 2023 Zhuheng Lu
Yuewei Dai
Weiqing Li
Zhiyong Su
+ Joint Data and Feature Augmentation for Self-Supervised Representation Learning on Point Clouds 2022 Zhuheng Lu
Yuewei Dai
Weiqing Li
Zhiyong Su
+ PDF Chat On Automatic Data Augmentation for 3D Point Cloud Classification 2021 Wanyue Zhang
Xun Xu
Fayao Liu
Le Zhang
Chuan-Sheng Foo
+ On Automatic Data Augmentation for 3D Point Cloud Classification 2021 Wanyue Zhang
Xun Xu
Fayao Liu
Le Zhang
Chuan-Sheng Foo
+ PDF Chat PointPatchMix: Point Cloud Mixing with Patch Scoring 2024 Yi Wang
Jiaze Wang
Jinpeng Li
Zixu Zhao
Guangyong Chen
Anfeng Liu
Pheng‐Ann Heng
+ PU-GAN: a Point Cloud Upsampling Adversarial Network 2019 Ruihui Li
Xianzhi Li
Chi‐Wing Fu
Daniel Cohen‐Or
Pheng‐Ann Heng
+ PointCutMix: Regularization Strategy for Point Cloud Classification 2021 Jinlai Zhang
Lyujie Chen
Bo Ouyang
Binbin Liu
Jihong Zhu
Yujing Chen
Yanmei Meng
Danfeng Wu
+ Test-Time Augmentation for 3D Point Cloud Classification and Segmentation 2023 Tuan-Anh Vu
Srinjay Sarkar
Zhiyuan Zhang
Binh‐Son Hua
Sai-Kit Yeung
+ PDF Chat Test-Time Augmentation for 3D Point Cloud Classification and Segmentation 2024 Tuan-Anh Vu
Srinjay Sarkar
Zhiyuan Zhang
Binh‐Son Hua
Sai-Kit Yeung
+ Point Cloud Colorization Based on Densely Annotated 3D Shape Dataset 2018 Xu Cao
Katashi Nagao
+ PDF Chat Upsampling Autoencoder for Self-Supervised Point Cloud Learning 2024 Jian Shi
Genfu Yang
Zizhao Wu
+ PointMixup: Augmentation for Point Clouds 2020 Yunlu Chen
Vincent Tao Hu
Efstratios Gavves
Thomas Mensink
Pascal Mettes
Pengwan Yang
Cees G. M. Snoek

Works That Cite This (53)

Action Title Year Authors
+ PDF Chat LATFormer: Locality-Aware Point-View Fusion Transformer for 3D shape recognition 2024 Xinwei He
Silin Cheng
Dingkang Liang
Song Bai
Xi Wang
Yingying Zhu
+ PDF Chat PseudoAugment: Learning to Use Unlabeled Data for Data Augmentation in Point Clouds 2022 Zhaoqi Leng
Shuyang Cheng
Benjamin Caine
Weiyue Wang
Zhang Xiao
Jonathon Shlens
Mingxing Tan
Dragomir Anguelov
+ PDF Chat On learning the right attention point for feature enhancement 2022 Liqiang Lin
Pengdi Huang
Chi‐Wing Fu
Kai Xu
Hao Zhang
Hui Huang
+ One Point is All You Need: Directional Attention Point for Feature Learning. 2020 Liqiang Lin
Pengdi Huang
Chi‐Wing Fu
Kai Xu
Hao Zhang
Hui Huang
+ PDF Chat Transfer Learning from Synthetic to Real LiDAR Point Cloud for Semantic Segmentation 2022 Aoran Xiao
Jiaxing Huang
Dayan Guan
Fangneng Zhan
Shijian Lu
+ PDF Chat TeachAugment: Data Augmentation Optimization Using Teacher Knowledge 2022 Teppei Suzuki
+ PoseAug: A Differentiable Pose Augmentation Framework for 3D Human Pose Estimation 2021 Kehong Gong
Jianfeng Zhang
Jiashi Feng
+ PDF Chat Sample-adaptive Augmentation for Point Cloud Recognition Against Real-world Corruptions 2023 Jie Wang
Lihe Ding
Tingfa Xu
Shaocong Dong
Xinli Xu
Long Bai
Jianan Li
+ Language-Level Semantics-Conditioned 3D Point Cloud Segmentation 2024 Liu Bo
Hui Zeng
Qiulei Dong
Zhanyi Hu
+ PDF Chat Point Cloud Augmentation with Weighted Local Transformations 2021 Sihyeon Kim
Sanghyeok Lee
Dasol Hwang
Jaewon Lee
Seong Jae Hwang
Hyunwoo J. Kim