Sample complexity and effective dimension for regression on manifolds

Type: Preprint

Publication Date: 2020-06-13

Citations: 0

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ Sample complexity and effective dimension for regression on manifolds 2020 Andrew D. McRae
Justin Romberg
Mark A. Davenport
+ Sample complexity and effective dimension for regression on manifolds 2020 Andrew D. McRae
Justin Romberg
Mark Davenport
+ PDF Chat Learning gradients on manifolds 2010 Sayan Mukherjee
Qiang Wu
Ding‐Xuan Zhou
+ Sample Complexity in Manifold Learning 2011 Hariharan Narayanan
+ Minimax Rates for Estimating the Dimension of a Manifold 2016 Jisu Kim
Alessandro Rinaldo
Larry Wasserman
+ The Mathematical Foundations of Manifold Learning 2020 Luke Melas-Kyriazi
+ The Mathematical Foundations of Manifold Learning. 2020 Luke Melas-Kyriazi
+ The Exact Sample Complexity Gain from Invariances for Kernel Regression 2023 Behrooz Tahmasebi
Stefanie Jegelka
+ The curse of dimension in nonparametric regression 2010 Sanjoy Dasgupta
Samory Kpotufe
+ PDF Chat Local Linear Regression on Manifolds and Its Geometric Interpretation 2013 Ming‐Yen Cheng
Hau‐Tieng Wu
+ PDF Chat Blessing of Dimensionality for Approximating Sobolev Classes on Manifolds 2024 Hong Ye Tan
Subhadip Mukherjee
Junqi Tang
Carola‐Bibiane Schönlieb
+ Effective Minkowski Dimension of Deep Nonparametric Regression: Function Approximation and Statistical Theories 2023 Zixuan Zhang
Minshuo Chen
Mengdi Wang
Wenjing Liao
Tuo Zhao
+ Dictionary-based Manifold Learning 2023 Hanyu Zhang
Samson Koelle
Marina Meilă
+ Kernel regression, minimax rates and effective dimensionality: beyond the regular case 2016 Gilles Blanchard
Nicole MĂźcke
+ Kernel regression, minimax rates and effective dimensionality: beyond the regular case 2016 Gilles Blanchard
Nicole MĂźcke
+ PDF Chat Kernel regression, minimax rates and effective dimensionality: Beyond the regular case 2020 Gilles Blanchard
Nicole MĂźcke
+ Statistical Methods for Manifold Recovery and C^{1, 1} Regression on Manifolds 2019 Kitty Mohammed
+ Local Linear Regression on Manifolds and its Geometric Interpretation 2012 Ming‐Yen Cheng
Hau‐Tieng Wu
+ PDF Chat A Distribution Dependent and Independent Complexity Analysis of Manifold Regularization 2020 Alexander Mey
Tom J. Viering
Marco Loog
+ A Convergence Rate for Manifold Neural Networks 2022 Joyce Chew
Deanna Needell
Michael Perlmutter

Works That Cite This (0)

Action Title Year Authors