The Expected Jacobian Outerproduct: Theory and Empirics

Type: Preprint

Publication Date: 2020-01-01

Citations: 0

DOI: https://doi.org/10.48550/arxiv.2006.03550

Locations

  • arXiv (Cornell University) - View
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Optimal objective function in high-dimensional regression 2012 Noureddine El Karoui
Derek Bean
Peter J. Bickel
Bin Yu
+ The Predictive Normalized Maximum Likelihood for Over-parameterized Linear Regression with Norm Constraint: Regret and Double Descent. 2021 Koby Bibas
Meir Feder
+ Supplemental materials for “High-dimensional regression and classification under a class of convex loss functions” 2013 Yuan Jiang
Chunming Zhang
+ PDF Chat TrIM: Transformed Iterative Mondrian Forests for Gradient-based Dimension Reduction and High-Dimensional Regression 2024 Ricardo Baptista
Eliza O’Reilly
Yangxinyu Xie
+ Nonparametric Linear Feature Learning in Regression Through Regularisation 2023 Bertille Follain
Francis Bach
+ PDF Chat Learning Unbiased Representations via Mutual Information Backpropagation 2021 Ruggero Ragonesi
Riccardo Volpi
Jacopo Cavazza
Vittorio Murino
+ Understanding the double descent curve in Machine Learning 2022 Luis Sa-Couto
Jose Miguel Ramos
Miguel Almeida
Andreas Wichert
+ A Formalization of The Natural Gradient Method for General Similarity Measures 2019 Anton Mallasto
Tom Dela Haije
Aasa Feragen
+ A Formalization of The Natural Gradient Method for General Similarity Measures 2019 Anton Mallasto
Tom Dela Haije
Aasa Feragen
+ Learning Invariant Representations using Inverse Contrastive Loss 2021 Aditya Kumar Akash
Vishnu Suresh Lokhande
Sathya N. Ravi
Vikas Singh
+ Learning Invariant Representations using Inverse Contrastive Loss 2021 Aditya Kumar Akash
Vishnu Suresh Lokhande
Sathya N. Ravi
Vikas Singh
+ Optimizing generalization on the train set: a novel gradient-based framework to train parameters and hyperparameters simultaneously. 2020 Karim Lounici
Katia MĂ©ziani
Benjamin Riu
+ Optimizing generalization on the train set: a novel gradient-based framework to train parameters and hyperparameters simultaneously 2020 Karim Lounici
Katia MĂ©ziani
Benjamin Riu
+ PDF Chat Function Aligned Regression: A Method Explicitly Learns Functional Derivatives from Data 2024 Dixian Zhu
Livnat Jerby‐Arnon
+ PDF Chat Learning Orthogonal Multi-Index Models: A Fine-Grained Information Exponent Analysis 2024 Yuchen Ren
Jason D. Lee
+ Learning Unbiased Representations via Mutual Information Backpropagation 2020 Ruggero Ragonesi
Riccardo Volpi
Jacopo Cavazza
Vittorio Murino
+ Learning Unbiased Representations via Mutual Information Backpropagation 2020 Ruggero Ragonesi
Riccardo Volpi
Jacopo Cavazza
Vittorio Murino
+ Multiple Descent: Design Your Own Generalization Curve 2020 Lin Chen
Yifei Min
Mikhail Belkin
Amin Karbasi
+ Contrastive Learning as Kernel Approximation 2023 Konstantinos Tsiolis
+ PDF Chat Scalable Kernel Inverse Optimization 2024 Y.H. Long
Tolga Ok
Pedro Zattoni Scroccaro
Peyman Mohajerin Esfahani

Works That Cite This (0)

Action Title Year Authors