Absolute Continuity of the Harmonic Measure on Low Dimensional Rectifiable Sets

Type: Article

Publication Date: 2022-07-23

Citations: 17

DOI: https://doi.org/10.1007/s12220-022-00978-0

Abstract

Abstract In the past decades, we learnt that uniform rectifiability is often a right candidate to go past Lipschitz boundaries in boundary value problems. If $$\Omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Ω</mml:mi> </mml:math> is an open domain in $$\mathbb {R}^n$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msup> <mml:mrow> <mml:mi>R</mml:mi> </mml:mrow> <mml:mi>n</mml:mi> </mml:msup> </mml:math> with mild topological conditions, we can even characterize the $$n-1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> dimensional uniformly rectifiability of the boundary $$\partial \Omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>Ω</mml:mi> </mml:mrow> </mml:math> by the $$A_\infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>∞</mml:mi> </mml:msub> </mml:math> -absolute continuity of the harmonic measure on $$\partial \Omega $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>∂</mml:mi> <mml:mi>Ω</mml:mi> </mml:mrow> </mml:math> with respect to the surface measure. In low dimension ( $$d&lt;n-1$$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>&lt;</mml:mo> <mml:mi>n</mml:mi> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> ), David and Mayboroda tackled one direction of the above characterization, i.e. proved that if $$\Gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Γ</mml:mi> </mml:math> is a d -dimensional uniformly rectifiable set, then the harmonic measure (associated to an suitable degenerate elliptic operator) on $$\Gamma $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Γ</mml:mi> </mml:math> is $$A_\infty $$ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>A</mml:mi> <mml:mi>∞</mml:mi> </mml:msub> </mml:math> -absolutely continuous with respect to the d -dimensional Hausdorff measure. In the present article, we use a completely new approach to give an alternative and significantly shorter proof of David and Mayboroda’s result.

Locations

  • Journal of Geometric Analysis - View - PDF

Similar Works

Action Title Year Authors
+ Absolute continuity between the surface measure and harmonic measure implies rectifiability 2015 Steve Hofmann
José María Martell
Svitlana Mayboroda
Xavier Tolsa
Alexander Volberg
+ Absolute continuity of the harmonic measure on low dimensional rectifiable sets 2020 Joseph Feneuil
+ Absolute continuity of harmonic measure for domains with lower regular boundaries 2016 Jonas Azzam
Mihalis Mourgoglou
Murat Akman
+ Absolute continuity between the surface measure and harmonic measure implies rectifiability 2015 Steve Hofmann
José María Martell
Svitlana Mayboroda
Xavier Tolsa
Alexander Volberg
+ PDF Chat Rectifiability of harmonic measure 2016 Jonas Azzam
Steve Hofmann
José María Martell
Svitlana Mayboroda
Mihalis Mourgoglou
Xavier Tolsa
Alexander Volberg
+ Approximate tangents, harmonic measure, and domains with rectifiable boundaries 2016 Mihalis Mourgoglou
+ Approximate tangents, harmonic measure, and domains with rectifiable boundaries 2016 Mihalis Mourgoglou
+ A sufficient geometric criterion for quantitative absolute continuity of harmonic measure 2017 Steve Hofmann
José María Martell
+ PDF Chat Uniform Rectifiability and Harmonic Measure III: Riesz Transform Bounds Imply Uniform Rectifiability of Boundaries of 1-sided NTA Domains 2013 Steve Hofmann
José María Martell
Svitlana Mayboroda
+ PDF Chat Mutual Absolute Continuity of Interior and Exterior Harmonic Measure Implies Rectifiability 2017 Jonas Azzam
Mihalis Mourgoglou
Xavier Tolsa
+ Absolute continuity of harmonic measure for domains with lower regular boundaries 2016 Murat Akman
Jonas Azzam
Mihalis Mourgoglou
+ Absolute continuity of harmonic measure for domains with lower regular boundaries 2016 Murat Akman
Jonas Azzam
Mihalis Mourgoglou
+ PDF Chat Uniform rectifiability, Carleson measure estimates, and approximation of harmonic functions 2016 Steve Hofmann
José María Martell
Svitlana Mayboroda
+ Approximate tangents, harmonic measure, and domains with rectifiable boundaries 2021 Mihalis Mourgoglou
+ PDF Chat Rectifiability, interior approximation and harmonic measure 2019 Murat Akman
Simon Bortz
Steve Hofmann
José María Martell
+ Uniform domains with rectifiable boundaries and harmonic measure 2015 Mihalis Mourgoglou
+ Uniform domains with rectifiable boundaries and harmonic measure 2015 Mihalis Mourgoglou
+ Harmonic measure and approximation of uniformly rectifiable sets 2015 Simon Bortz
Steve Hofmann
+ Harmonic measure and approximation of uniformly rectifiable sets 2015 Simon Bortz
Steve Hofmann
+ Mutual absolute continuity of interior and exterior harmonic measure implies rectifiability 2016 Jonas Azzam
Mihalis Mourgoglou
Xavier Tolsa