FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity to Non-IID Data.

Type: Preprint

Publication Date: 2020-05-22

Citations: 54

Locations

  • arXiv (Cornell University) - View

Similar Works

Action Title Year Authors
+ PDF Chat FedPD: A Federated Learning Framework With Adaptivity to Non-IID Data 2021 Xinwei Zhang
Mingyi Hong
Sairaj V. Dhople
Wotao Yin
Yang Liu
+ A Unified Linear Speedup Analysis of Federated Averaging and Nesterov FedAvg 2020 Zhaonan Qu
Kaixiang Lin
Zhaojian Li
Jiayu Zhou
Zhengyuan Zhou
+ PDF Chat A Unified Linear Speedup Analysis of Federated Averaging and Nesterov FedAvg 2023 Zhaonan Qu
Kaixiang Lin
Zhaojian Li
Jiayu Zhou
Zhengyuan Zhou
+ Federated Learning's Blessing: FedAvg has Linear Speedup 2021 Zhaonan Qu
Kaixiang Lin
Zhaojian Li
Jiayu Zhou
Zhengyuan Zhou
+ Federated Learning with Compression: Unified Analysis and Sharp Guarantees 2020 Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
Mehrdad Mahdavi
+ FedDA: Faster Framework of Local Adaptive Gradient Methods via Restarted Dual Averaging 2023 Junyi Li
Feihu Huang
Heng Huang
+ Federated Learning with Compression: Unified Analysis and Sharp Guarantees 2020 Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
Mehrdad Mahdavi
+ DualFL: A Duality-based Federated Learning Algorithm with Communication Acceleration in the General Convex Regime 2023 Jong-Ho Park
Jinchao Xu
+ Federated Composite Optimization 2020 Honglin Yuan
Manzil Zaheer
Sashank J. Reddi
+ PDF Chat Achieving Linear Speedup in Asynchronous Federated Learning with Heterogeneous Clients 2024 Xiaolu Wang
Zijian Li
Shi Jin
Jun Zhang
+ Locally Adaptive Federated Learning via Stochastic Polyak Stepsizes 2023 Sohom Mukherjee
Nicolas Loizou
Sebastian U. Stich
+ FedAgg: Adaptive Federated Learning with Aggregated Gradients 2023 Wenhao Yuan
Xuehe Wang
+ Fast Federated Learning in the Presence of Arbitrary Device Unavailability 2021 Xinran Gu
Kaixuan Huang
Jingzhao Zhang
Longbo Huang
+ Fast Federated Learning in the Presence of Arbitrary Device Unavailability 2021 Xinran Gu
Kaixuan Huang
Jingzhao Zhang
Longbo Huang
+ PDF Chat Fast Federated Learning in the Presence of Arbitrary Device Unavailability 2021 Xinran Gu
Kaixuan Huang
Jingzhao Zhang
Longbo Huang
+ FedLGA: Towards System-Heterogeneity of Federated Learning via Local Gradient Approximation 2021 Xingyu Li
Zhe Qu
Bo Tang
Zhuo Lu
+ Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients 2021 Aritra Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
+ Linear Convergence in Federated Learning: Tackling Client Heterogeneity and Sparse Gradients 2021 Aritra Mitra
Rayana H. Jaafar
George J. Pappas
Hamed Hassani
+ PDF Chat LoSAC: An Efficient Local Stochastic Average Control Method for Federated Optimization 2023 Huiming Chen
Huandong Wang
Quanming Yao
Yong Li
Depeng Jin
Qiang Yang
+ PDF Chat Federated Optimization Under Intermittent Client Availability 2024 Yikai Yan
Chaoyue Niu
Yucheng Ding
Zhenzhe Zheng
Shaojie Tang
Qinya Li
Fan Wu
Chengfei Lyu
Yanghe Feng
Guihai Chen

Works That Cite This (38)

Action Title Year Authors
+ Federated Composite Optimization 2020 Honglin Yuan
Manzil Zaheer
Sashank J. Reddi
+ FedCM: Federated Learning with Client-level Momentum 2021 Jing Xu
Sen Wang
Liwei Wang
Andrew Chi-Chih Yao
+ Local Adaptivity in Federated Learning: Convergence and Consistency 2021 Jianyu Wang
Zheng Xu
Zach Garrett
Zachary Charles
Luyang Liu
Gauri Joshi
+ The Internet of Federated Things (IoFT): A Vision for the Future and In-depth Survey of Data-driven Approaches for Federated Learning 2021 Raed Al Kontar
Naichen Shi
Xubo Yue
Seokhyun Chung
Eunshin Byon
Mosharaf Chowdhury
Judy Jin
Wissam Kontar
Neda Masoud
Maher Noueihed
+ Federated Learning with Compression: Unified Analysis and Sharp Guarantees 2020 Farzin Haddadpour
Mohammad Mahdi Kamani
Aryan Mokhtari
Mehrdad Mahdavi
+ PDF Chat Faster Adaptive Federated Learning 2023 Xidong Wu
Feihu Huang
Zhengmian Hu
Heng Huang
+ The Internet of Federated Things (IoFT) 2021 Raed Al Kontar
Naichen Shi
Xubo Yue
Seokhyun Chung
Eunshin Byon
Mosharaf Chowdhury
Jionghua Jin
Wissam Kontar
Neda Masoud
Maher Nouiehed
+ PDF Chat FedBN: Federated Learning on Non-IID Features via Local Batch Normalization 2021 Xiaoxiao Li
Meirui Jiang
Xiaofei Zhang
Michael Kamp
Qi Dou
+ A Field Guide to Federated Optimization 2021 Jianyu Wang
Zachary Charles
Zheng Xu
Gauri Joshi
H. Brendan McMahan
Blaise Agüera y Arcas
Maruan Al-Shedivat
Galen Andrew
Salman Avestimehr
Katharine Daly
+ PDF Chat Bayesian Federated Neural Matching That Completes Full Information 2023 Peng Xiao
Samuel Cheng

Works Cited by This (25)

Action Title Year Authors
+ PDF Chat Penalized likelihood regression for generalized linear models with non-quadratic penalties 2009 Anestis Antoniadis
Irène Gijbels
Mila Nikolova
+ Federated Learning: Strategies for Improving Communication Efficiency 2016 Jakub Konečný
H. Brendan McMahan
Felix X. Yu
Peter Richtárik
Ananda Theertha Suresh
Dave Bacon
+ Optimal algorithms for smooth and strongly convex distributed optimization in networks 2017 Kevin G. Seaman
Francis Bach
Sébastien Bubeck
Yin Tat Lee
Laurent Massoulié
+ When Edge Meets Learning: Adaptive Control for Resource-Constrained Distributed Machine Learning 2018 Shiqiang Wang
Tiffany Tuor
Theodoros Salonidis
Kin K. Leung
Christian Makaya
Ting He
Kevin Chan
+ Distributed Non-Convex First-Order Optimization and Information Processing: Lower Complexity Bounds and Rate Optimal Algorithms 2019 Haoran Sun
Mingyi Hong
+ Cooperative SGD: A unified Framework for the Design and Analysis of Communication-Efficient SGD Algorithms 2018 Jianyu Wang
Gauri Joshi
+ PDF Chat Parallel Restarted SGD with Faster Convergence and Less Communication: Demystifying Why Model Averaging Works for Deep Learning 2019 Hao Yu
Sen Yang
Shenghuo Zhu
+ LEAF: A Benchmark for Federated Settings 2018 Sebastian Caldas
Peter Wu
Li Tian
Jakub Konečný
H. Brendan McMahan
Virginia Smith
Ameet Talwalkar
+ On the Convergence of Federated Optimization in Heterogeneous Networks. 2018 Anit Kumar Sahu
Tian Li
Maziar Sanjabi
Manzil Zaheer
Ameet Talwalkar
Virginia Smith
+ Towards Federated Learning at Scale: System Design 2019 Keith Bonawitz
Hubert Eichner
Wolfgang Grieskamp
Dzmitry Huba
Alex Ingerman
Vladimir Ivanov
Chloé Kiddon
Jakub Konečný
Stefano Mazzocchi
H. Brendan McMahan