Perturbed interpolation formulae and applications

Type: Article

Publication Date: 2023-12-11

Citations: 3

DOI: https://doi.org/10.2140/apde.2023.16.2327

Abstract

We employ functional analysis techniques in order to deduce that some classical and recent interpolation results in Fourier analysis can be suitably perturbed. As an application of our techniques, we obtain generalizations of Kadec's 1/4-theorem for interpolation formulae in the Paley-Wiener space both in the real and complex case, as well as a perturbation result on the recent Radchenko-Viazovska interpolation result and the Cohn-Kumar-Miller-Radchenko-Viazovska result for Fourier interpolation with derivatives in dimensions 8 and 24. We also provide several applications of the main results and techniques, all relating to recent contributions in interpolation formulae and uniqueness sets for the Fourier transform.

Locations

  • Analysis & PDE - View - PDF
  • arXiv (Cornell University) - View - PDF
  • Repository for Publications and Research Data (ETH Zurich) - View - PDF
  • DataCite API - View

Similar Works

Action Title Year Authors
+ Corrigendum: Interpolation of Hilbert and Sobolev spaces: Quantitative estimates and counterexamples 2022 Simon N. Chandler‐Wilde
David P. Hewett
Andrea Moiola
+ Approximation properties of periodic multivariate quasi-interpolation operators 2020 Yurii Kolomoitsev
JĂŒrgen Prestin
+ Approximation properties of periodic multivariate quasi-interpolation operators 2020 Yurii Kolomoitsev
JĂŒrgen Prestin
+ Interpolation Theorems in Harmonic Analysis 2012 Mark H. Kim
+ Interpolation Theorems in Harmonic Analysis 2012 Mark H. Kim
+ Editorial for the <i>MMAS</i> special issue “Role of Fractional Operators and Mathematical Modelling in Applied Sciences” 2022 Jagdev Singh
Devendra Kumar
Dumitru Băleanu
+ PDF Chat Approximation properties of periodic multivariate quasi-interpolation operators 2021 Yurii Kolomoitsev
JĂŒrgen Prestin
+ PDF Chat Correction: Krulić Himmelreich et al. Generalizations of Hardy Type Inequalities by Abel–Gontscharoff’s Interpolating Polynomial. Mathematics 2021, 9, 1724 2023 Kristina Krulić Himmelreich
‎Josip Pečarić
Dora Pokaz
Marjan Praljak
+ Research Problems in Function Theory (New Edition) 2018 W. K. Hayman
Eleanor F. Lingham
+ Frontiers in Interpolation and Approximation 2006 N. K. Govil
H. N. Mhaskar
R. N. Mohapatra
Zuhair Nashed
J. Szabados
+ Research Problems in Function Theory (New Edition) 2018 W. K. Hayman
Eleanor F. Lingham
+ Interpolation 1984 D. H. Luecking
L. A. Rubel
+ Interpolation 2018 Douglas G. Martinson
+ Interpolationen 1993 Gerald Schmieder
+ interpolation 2014
+ Polynomial Interpolation 2014 Tom Lyche
Jean‐Louis Merrien
+ Interpolation 2014 Walter Gander
Martin J. Gander
FĂ©lix Kwok
+ The work of Maryna Viazovska 2022 Henry Cohn
+ The work of Maryna Viazovska 2023 Henry Cohn
+ Interpolation and Polynomials 2023 Erik Cuevas
Alberto Luque
HĂ©ctor Escobar