Projects
Reading
People
Chat
SU\G
(𝔸)
/K·U
Projects
Reading
People
Chat
Sign Up
Light
Dark
System
Marstrand type slicing statements in $\mathbb{Z}^{2}\subset \mathbb{R}^{2}$ are false for the counting dimension
Aritro Pathak
Type:
Preprint
Publication Date:
2020-05-19
Citations:
0
View Publication
Share
Locations
arXiv (Cornell University) -
View
Similar Works
Action
Title
Year
Authors
+
Marstrand type slicing statements in $\mathbb{Z}^{2}\subset \mathbb{R}^{2}$ are false for the counting dimension
2020
Aritro Pathak
+
A Marstrand type slicing theorem for subsets of $\mathbb{Z}^2 \subset \mathbb{R}^2$ with the mass dimension
2020
Aritro Pathak
+
A Marstrand type slicing theorem for subsets of $\mathbb{Z}^2 \subset \mathbb{R}^2$ with the mass dimension
2020
Aritro Pathak
+
PDF
Chat
A Discrete Marstrand Type Slicing Theorem with the Mass Dimension
2024
Aritro Pathak
+
PDF
Chat
A Marstrand Theorem for Subsets of Integers
2013
Yuri Lima
Carlos Gustavo Moreira
+
On the volumes of simplices determined by a subset of $\mathbb{R}^d$
2023
Pablo Shmerkin
Alexia Yavicoli
+
An improved bound on the Hausdorff dimension of Besicovitch sets in $\mathbb{R}^3$
2017
Nets Hawk Katz
Joshua Zahl
+
Slicing inequalities for subspaces of $L_p.$
2013
Alexander Koldobsky
+
Slicing inequalities for subspaces of $L_p.$
2013
Alexander Koldobsky
+
An improved bound on the Hausdorff dimension of Besicovitch sets in $\mathbb{R}^3$
2017
Nets Hawk Katz
Joshua Zahl
+
PDF
Chat
Slicing the cube in ${\bf R}\sp{n}$ and probability (bounds for the measure of a central cube slice in ${\bf R}\sp{n}$ by probability methods)
1979
Douglas Hensley
+
PDF
Chat
None
2022
Matthieu Fradelizi
Zsolt Lángi
Artem Zvavitch
+
Random intersections of thick Cantor sets
1999
Roger L. Kraft
+
An improved bound on the Hausdorff dimension of Besicovitch sets in ℝ³
2018
Nets Hawk Katz
Joshua Zahl
+
PDF
Chat
Marstrand-type Theorems for the Counting and Mass Dimensions in ℤ
2016
Daniel Glasscock
+
A stronger conclusion to the classical ham sandwich theorem
2011
John H. Elton
Theodore P. Hill
+
An $L^{4/3}$ $SL_2$ Kakeya maximal inequality
2023
Terence L. J. Harris
+
Slicing inequalities for measures of convex bodies
2015
Alexander Koldobsky
+
PDF
Chat
Book Review: Dense sphere packings: a blueprint for formal proofs
2015
Jeffrey C. Lagarias
+
A<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll"><mml:msqrt><mml:mi>n</mml:mi></mml:msqrt></mml:math>estimate for measures of hyperplane sections of convex bodies
2014
Alexander Koldobsky
Works That Cite This (0)
Action
Title
Year
Authors
Works Cited by This (12)
Action
Title
Year
Authors
+
Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability
1995
Pertti Mattila
+
Defining Fractal Subsets of <i>Z</i> <sup> <i>d</i> </sup>
1992
Martin T. Barlow
S. J. Taylor
+
Fractional dimension of sets in discrete spaces
1989
Martin T. Barlow
S. J. Taylor
+
Dimension of discrete fractal spaces
1988
Jan Naudts
+
Analogues of the Lebesgue Density Theorem for Fractal Sets of Reals and Integers
1992
Tim Bedford
Albert M. Fisher
+
PDF
Chat
A Marstrand Theorem for Subsets of Integers
2013
Yuri Lima
Carlos Gustavo Moreira
+
PDF
Chat
Integer Cantor sets and an order-two ergodic theorem
1993
Albert M. Fisher
+
PDF
Chat
Marstrand-type Theorems for the Counting and Mass Dimensions in ℤ
2016
Daniel Glasscock
+
Fractals in Probability and Analysis
2016
Christopher J. Bishop
Yuval Peres
+
PDF
Chat
A proof of Furstenberg's conjecture on the intersections of $\times p$- and $\times q$-invariant sets
2019
Meng Wu